E1039/SpinQuest: Polarized Drell-Yan Experiment at Fermilab

Abinash Pun

NMSU

INPP Seminar, Ohio University

March 23, 2021

🚰 Fermilab

About Me (past)

Abinash Pun

- Ohio University (2013-2019)
- Nepal
- Graduate Advisor: Dr. Justin Frantz

- Dissertation: "Measurements of Di-Jet $\pi^0 h^{\pm}$ Correlations in Light-Heavy Ion Collisions at RHIC-PHENIX"
 - Study of possible jet energy loss (due to QGP) in light-heavy ion Collison
 - Analyzed: p+p, d+Au and He³+Au collision systems
- sPHENIX Electromagnetic calorimeter:
 - Reconstructing performance, Energy leakage and New Calibration framework
- Fun4All software framework:
 - Modularized data analyzing framework (*C. Pinkenburg* for PHENIX)
 - Being used in sPHENIX (also in EIC ?)

About Me (Currently)

- Post-Doctoral Research Associate at New Mexico State University (NMSU)
- SpinQuest Experiment at Fermilab
 - Reconstruction and Simulation Coordinator
 - Data management
- Currently stationed near Fermilab, IL

(NMSU) Group in SpinQuest Professors:

Dr. Stephen Pate (PI): Deputy Chairman Dr. Vassili Papavassiliou: Talks Committee <u>Grad students</u>

Forhad Hossain Dinupa Nawarathne

Background

Proton Structure

- Ernest Rutherford (1909):
 - "proton" : nucleus of lightest atom (hydrogen)
 - Considered to be elementary like electron
- Spin=1/2, charge = +1, Mass \approx 938.28 MeV
- Magnetic moment:
 - $\mu = g \frac{q}{2m} \vec{s} \approx 2.79 \frac{e}{2m_p} \approx 2.79 \text{ x point like fermions}$ First hint of internal structure of proton !!
- Quark Model: Gell-Mann and Zweig (1964)

• Charge
$$(+1) = \frac{2}{3} + \frac{2}{3} - \frac{1}{3}$$

• Spin (1/2) = $\frac{1}{2}\Delta\Sigma = \frac{1}{2} + \frac{1}{2} - \frac{1}{2}$

Probing Internal structure of nucleons

- Elastic electron-nucleon scattering
 - Cross-section parametrized in terms of electric and magnetic form factors (G_E , G_M)
- Deep Inelastic Scattering (DIS):

High Q2 proton breaks up

 $G_E, G_M \rightarrow F1(x,Q2), F2(x,Q2)$; structure functions

$$F_2(x,Q^2) = \sum_{i} e_i^2 x f_i(x,Q^2)$$

f(x,Q2): Parton distribution function (PDF)

Factorization Theorem:

$$\sigma_{\rm DIS} \propto \sum \mathbf{f}(\mathbf{x}, \mathbf{Q}^2) \otimes \hat{\sigma}$$

Determined from measurements

Can be calculated from perturbative QCD (pQCD)

Q²: Squared momentum transfer to the lepton. Measure of resolution X: Momentum fraction of the struck parton in a proton

PDFs and QCD Parton Model

Polarized DIS

Spin dependent polarized Structure Function $g_1(x,Q^2)$: $g_1(x,Q^2) \sim \sum_q e_q^2 \Delta q(x,Q^2)$

$$\Delta q(x,Q^2) \equiv q_+(x,Q^2) - q_-(x,Q^2)$$

$$\xrightarrow{\bullet} - \xrightarrow{\bullet}$$

 $q_{+(-)}$: number density of quarks in the nucleon when the spin orientation of quarks is parallel (antiparallel) to the spin direction of the proton

Polarized DIS and Proton Spin

European Muon Collaboration (EMC) : 1988

DIS of a longitudinally polarized muon beam off a longitudinally polarized proton target over a large x range (0.01 < x < 0.7)

$$\cong \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x)}{F_1(x)} \qquad \qquad \int_0^1 g_1^p \,\mathrm{d}x = 0.123 \pm 0.013 \pm 0.019 \,,$$

Quarks' contribution only ~12%: SPIN CRISIS

 A_1

Gluon contribution: RHIC

Measuring the the **asymmetry of jets and pions** in longitudinally polarized proton-proton collision

$$A_{LL} = rac{\sigma^{++} - \sigma^{+-}}{\sigma^{++} + \sigma^{+-}} \propto rac{\sum_{a,b} \Delta f_a \Delta f_b a_{LL}^2}{\sum_{a,b} f_a f_b}$$

RHIC data=> Non-zero gluon contribution

$$\int_{0.05}^{1} dx \Delta g(x) = 0.2^{+0.06}_{-0.07}$$

Still huge uncertainty in the unmeasured region (x<0.05)

EIC is expected to provide a conclusive answer (?)

Making the case for E1039 Experiment

Lattice Calculation

- ⇒ Large fraction of proton spin comes from light anti quarks OAM
- \Rightarrow Need to understand it experimentally and theoretically

How to access quark OAM ?

 $\Delta \Sigma_q \approx 25\% \qquad L_u \approx - L_d$ 2 $L_q \approx 46\% (0\% (valence) + 46\% (sea))$ 2 $J_g \approx 25\% \qquad 12$

Light anti-quark flavor asymmetry: $\frac{d}{\overline{u}}$

 $S_{G} = \int_{0}^{1} \frac{dx}{x} [F_{2}^{p}(x) - F_{2}^{n}(x)] = \frac{1}{3} + \frac{2}{3} \int_{0}^{1} dx [\overline{u}(x) - \overline{d}(x)] = 0.235 \pm 0.026$

Gottfried Sum Rule: **S**_G =**1/3**

 $\int_0^1 dx [\bar{d}(x) - \bar{u}(x)] = 0.147 \pm 0.039$

- Data reasonably agrees with the models (statistical parton distribution and meson-baryon)
- But the models have different predictions for the spin contribution from the anti quarks

Measure the spin contribution from light sea quarks to differentiate the models

Sivers Function

- Correlation between proton spin (S_p) and intrinsic parton transverse momentum k_{T,q}
- Introduced to explain transverse single spin asymmetries of pions in $pp^{\uparrow} \rightarrow \pi X$
- One of the eight leading order Transverse Momentum Dependent Distribution functions (TMDs)

Nonzero Sivers function => Nonzero OAM contribution of parton on proton spin?

Abinash Pun, NMSU

Accessing Sea Quark Sivers Function

- L-R asymmetry in hadron production
- Quark to hadron fragmentation function
- Valence-sea quark: mixed

- L-R asymmetry in Drell-Yan production
- ✓ No fragmentation function
- ✓ Valence-sea quark: isolated

So far ...

- Spin Crisis to Spin puzzle: Yet to be solved
- Lattice Calculation

 \Rightarrow Significant contribution from OAM of sea quark

- Light antiquark flavor asymmetry in E866 and E906
 - ⇒Need for the measurement of spin contribution to differentiate existing models
- Non-vanishing sea quark Sivers distribution
 =>might establish the contribution of sea quark in nuclear spin
- Drell-Yann process allows direct measurement of Sivers Function
 - without complication of fragmentation function and final state interaction
 - Sensitive to sea quarks

E1039/SpinQuest experiment

- Polarized Fixed Target DY at experiment Fermilab
- Unpolarized proton beam of 120 GeV with Polarized NH₃ or ND₃ target
- <u>Goals:</u>
 - measure azimuthal asymmetry in dimuons from Drell-Yan and
 - extract the magnitude and sign of Sivers function of sea quarks (\overline{u} and \overline{d})

Polarized Drell-Yan in E1039

Cross section at LO

 $\frac{d^2\sigma}{dx_{beam}dx_{target}} = \frac{4\pi\alpha^2}{9x_{beam}x_{target}} \frac{1}{s} \sum_{i=u,d,\cdots} e_i^2 \cdot \{q_i(x_{beam})\overline{q}_i(x_{target}) + \overline{q}_i(x_{beam})\overline{q}_i(x_{target})\}$

• " $q(xbea_m)\overline{q}(x_{target})$ " survives @forward rapidity

https://arxiv.org/abs/1901.09994v2

Polarized Drell-Yan in E1039

The Drell-Yan cross section in terms of Sivers asymmetry

$$\frac{d \sigma^{LO}}{d^4 q \ d\phi_S} \propto 1 \pm |S_{\rm T}| \ \sin \phi_S \ A_T^{\sin \phi_S}$$

$$A(\phi_S) = \frac{1}{|S_T|} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} = \sin \phi_S A_T^{\sin \phi_S} \propto \frac{f_{1T}^{\perp,\overline{u}}(x_t)}{f_1^{\overline{u}}(x_t)}$$

- 1. $A_T^{\sin \phi_S}$ is the Sivers asymmetry.
- 2. \vec{S}_T = Target spin vector
- *3.* \vec{q}_T = Dimuon's transverse momentum
- 4. Azimuthal angle ϕ_S in Target Rest Frame

Sketch: F. Hossain

Phys. Rev. D 79, 034005 (2009), PRL 119, 112002 (2017)

Anticipated Sensitivity of E1039

About SpinQuest/E1039 Collaboration

- Relatively small collaboration
 - 51 Full members,
 - 12 grad students, 10 postdocs, 29 faculties
 - 50 Affiliate members
 - 17 institutions from 5 countries (Armenia, China, Srilanka, Japan, USA)

• Spokespersons:

- Kun Liu (<u>liuk@fnal.gov</u>): LANL
- Dustin Keller (<u>dustin@jlab.org</u>): UVA (OU Alumni)
- Official webpage: <u>https://spinquest.fnal.gov</u>

ACU: Donald Isenhower (PI), Michael Daugherity, Shon Watson ANL: Paul Reimer (PI), Donald Geesaman FNAL: Rick Tesarek (PI), Carol Johnstone, Charles Brown, Cristina Suarez KEK: Shin'ya Sawada (PI) LANL: Kun Liu (PI, SP), Ming Liu, Astrid Morreale, Mikhail Yurov, Kei Nagai, **Zongwei Zhang** MSU: Lamiaa El Fassi (PI), Dipangkar Dutta, Catherine Ayuso, Nuwan Chaminda NMSU: Stephen Pate (PI), Vassili Papavassiliou, Abinash Pun, Forhad Hossain, Dinupa Nowarathne **RIKEN:** Yuji Goto (PI) Shandong U: Qinghua Xu (PI), Zhaohuizi Ji TokyoTech: Kenichi Nakano (PI), Toshi-Aki Shibata U. Colo: Darshana Perera(PI), Harsha Sirilal, Vibodha Bandara UIUC: Jen-Chieh Peng (PI), Jason Dove, Ching-Him Leung U. Mich: Wolfgang Lorenzon (PI), levgen Lavrukhin, Minjung Kim, Noah Wuerfel UNH: Karl Slifer (PI), David Ruth UVA: Dustin Keller (PI, SP), Ishara Fermando, Zulkaida Akbar, Liliet Diaz, Anchit Arora. Arthur Conover Yamagata U: Yoshiyuki Miyachi (PI), Norihito Doshita YerPhl: Hrachya Marukyan (PI)

- Postdocs - Grad students

Fermilab: Proton Beam

- Energy E = 120 GeV
- $(\sqrt{s} = 15 \; GeV)$
- Duty Cycle (60 sec)
 - 4 sec for SpinQuest
 - Rest for neutrino
 experiments
- Bunch
 - Length: 1 n sec
 - Interval: 19 n sec (53 MHz)
 - 4×10^{12} protons in 4 sec

E1039/SpinQuest Spectrometer

SeaQuest/E906 spectrometer

- 4 tracking stations, trigger hodoscope
- Focusing and analyzing magnets Station 4: Stations 2 and 3: Hodoscope array Proportional tube tracking Hodoscope array Iron dump Drift chamber tracking Station 1: Hodoscope array MWPC tracking Momentum Solid iron focusing measuring magnet (KMag) magnet, hadron absorber and beam Transversely Polarized proton or deuteron dump (FMag) using target NH_3 or ND_3 . The SpinQuest target location is -300 cm upstream of the FMag Hadron absorber (iron wall) Main Injector Beam $\rightarrow \mu^+ \mu^-$ 120 GeV Proton Liquid H_2 , D_2 , and solid targets SeaQuest Dimuon Spectrometer

Typical Drell-Yan event in E1039/SpinQuest

- Detection of dimuons:
 - Trigger with hodoscopes at station 1 4
 - Tracking with drift chambers at station 1-3
 - Muon identification with drift tubes at station 4
 - Resolution: $dM/M \lesssim 10$ % (dominated by the multiple scattering in FMag)

.

Dimuon mass distribution from E906

Nature 590, 561–565 (2021)

Beamline and Shielding

- Major modification around target (compared to E906): Thanks to Fermilab Accelerator Division
 - More radiation shielding
 - New cryo platform for target infrastructure
 - New location of target cave (300 cm upstream of Fmag)
 - New collimator on beam line

E1039-Experimental Hall

M. Yurov

Polarized Target

- Designed for high intensity proton beam (4 × 10^12 proton/ 4 sec) by LANL-UVA group
- 8 cm long solid NH3 and ND3 targets
- Magnetic Field: B = 5 T with $dB/B < 10^{-4}$ over 8 cm
- ⁴He evaporation refrigerator (3 W of maximum cooling power)
- 140 GHz microwave source

Source: Zulkaida, Joshua

Material	Density	Dilution factor	Packing fraction	Polarization	Interaction length
NH_3	$0.867 \mathrm{g/cm^3}$	0.176	0.60	80%	5.3%
ND_3	$1.007 \mathrm{~g/cm^3}$	0.300	0.60	32%	5.7%

Polarized Target

Dynamic Nuclear Polarization (DNP)

- The coupling between (unpaired) electron
 & proton introduces hyper- fine splitting
- Applying an RF-signal at the correct frequency, we can drive the nucleons into preferential state
- The disparity in relaxation times between the electron (ms) and proton (tens of minutes) at 1K is crucial to continue proton polarization

Target systems

- 1. Microwave system: pumps the spin polarization of the target
- 2. NMR system: measures the target polarization
- 3. Cryogenics and pumping system: cools the solid target and magnet coils

$$H = -\mu_e B - \mu_p B + H_{SS}$$

Source: Zulkaida, Joshua

29

Parasite Run for Dark Photon Search

(Un)Polarized Drell Yan Experiments

Experiment	Particles	Energy (GeV)	$\mathbf{x}_{\mathbf{b}}$ or $\mathbf{x}_{\mathbf{t}}$	Luminosity (cm ⁻² s ⁻¹)	P_{b} or $P_{t}(f)$	rFOM#	Timeline
COMPASS (CERN)	π^{-} + \mathbf{p}^{\uparrow}	160 GeV √s = 17	$x_t = 0.1 - 0.3$	2 x 10 ³³	P _t = 90% f = 0.22	1.1 x 10 -3	2015-2016, 2018
J-PARC (high-p beam line)	π ⁻ + p	10- 20 GeV √s = 4.4-6.2	$x_{b} = 0.2 - 0.97$ $x_{t} = 0.06 - 0.6$	2 x 10 ³¹			>2020? under discussion
fsPHENIX (RHIC)	$\mathbf{p}^{\uparrow} + \mathbf{p}^{\uparrow}$	√s = 200 √s = 510	$x_b = 0.1 - 0.5$ $x_b = 0.05 - 0.6$	8 x 10 ³¹ 6 x 10 ³²	P _b = 60% P _b = 50%	4.0 x 10 ⁻⁴ 2.1 x 10 ⁻³	>2021?
SeaQuest (FNAL: E-906)	p + p	120 GeV √s = 15	$x_b = 0.35 - 0.9$ $x_t = 0.1 - 0.45$	3.4 x 10 ³⁵			2012 – 2017
Pol tgt DY [‡] (FNAL: E-1039)	p + p [↑] p + d [↑]	120 GeV √s = 15	$x_t = 0.1 - 0.45$	3.0 x 10 ³⁵ 3.5 x 10 ³⁵	P _t = 85% f = 0.176	0.15	2021-2023+
Pol beam DY [§] (FNAL: E-1027)	p [↑] + p	120 GeV √s = 15	x _b = 0.35 – 0.9	2 x 10 ³⁵	P _b = 60%	1	> 2023+ ???

⁺8 cm NH₃ target / [§]L= 1 x 10³⁶ cm⁻² s⁻¹ (LH₂ tgt limited) / L= 2 x 10³⁵ cm⁻² s⁻¹ (10% of MI beam limited) *not constrained by SIDIS data / [#]rFOM = relative lumi * P² * f² wrt E-1027 (f=1 for pol p beams, f=0.22 for π^- beam on NH₃)

W. Lorenzon (U-Michigan)

E1039 Status and Timeline

Summary

- The Spin puzzle is yet to solved
 - Angular momentum contribution is least understood
- E1039 intend to measure
 - Sivers asymmetry in Drell-Yan process using polarized $\rm NH_3$ and $\rm ND_3$ target
 - Magnitude and sign of Sivers function of sea quarks (\overline{u} and \overline{d})
 - Anticipated statistical accuracy $\sim 3-5~\%$
- Non-zero Sivers asymmetry => Non-zero OAM for light anti-quarks (Major discovery!)
- Data taking starts by 2021 Fall
 - Expected to run for two years of beam time

Parton distribution functions

Taking into account the intrinsic transverse momentum k_T of quarks, at LO 8 PDFs are needed for a full description of the nucleon:

- longitudinally polarized protons at RHIC can access Δg(x,Q₂) directly through quark-gluon and gluon-gluon scattering.
- gluon scattering processes dominate at low xT

Gluon contribution: RHIC

$$\int_{0.05}^{1} dx \Delta g(x) = 0.20^{+0.06}_{-0.07}$$

Unexplored x<0.05 and significant uncertainties

Meson Cloud Model

The meson cloud model explains the flavor asymmetry in the sea and requires quarks to carry angular momentum.

 $|p\rangle = p + N\pi + \Delta\pi + \dots$

Pions $J^p=0^-$ Negative Parity Need L=1 to get proton's $J^p=\frac{1}{2}^+$

Sea quarks should carry orbital angular momentum.

Sivers Effect in the Nucleon

Reasons for the Asymmetry

The number density of unpolarized quarks in a transeverly polarized proton:

$$f_{q/p^{\uparrow}}\left(x_{B},\vec{k}_{T}\right) = f_{1}^{q}\left(x_{b},k_{T}^{2}\right) - f_{1T}^{\perp q}\left(x_{B},k_{T}^{2}\right) - \frac{\left(\hat{P}\times\vec{k}_{T}\right)}{m_{r}}$$

The k_T distribution of quarks in a transversely polarized proton can be asymmetric and known as "Sivers effect". Gives correlation between \vec{k}_T and \vec{S}

 m_n

Phys. Rev. D 70, 117504 (2004) Phys. Rev. D 67, 074010 (2003)

- 1. $\sigma_{DY}^{\uparrow\downarrow}$ is the Drell-Yan cross section when spin is vertically up(down.) 2. $A_{\tau}^{\sin\phi_{S}}$ is the Sivers asymmetry that SpinQuest will measure.
- 3. Azimuthal angle ϕ_S in target rest frame can be written in terms of azimuthal angle ϕ defined in detector rest frame: $\phi_S = (\frac{\pi}{2} \phi)$.

Brute-Force Method:

 Use high-B at low-T via zeeman-splitting mechanism

 Degree of polarization at thermal equilibrium

$$P = tanh\left(\frac{\mu B}{kT}\right)$$

 Proton has small magnetic moment

 $\mu_e\approx 660\mu_p$

• At B = 5 Tesla & T = 1 K

$$P_e = \sim 98\%, P_p = 0.51\%$$

We need a better method!

average Sivers asymmetry $A_T^{\sin \varphi_S} = 0.060 \pm 0.057 (\text{stat}) \pm 0.040 (\text{sys})$ is found to be above 0 at about one standard

Fundamental Properties

Property	Value			
Muon Mass	$105.6583668 \pm 0.0000038$ MeV			
Muon Electric Charge	e^- , e^+ (anti-muon)			
Mean Life	$2.19703 \pm 0.00004 \ \mu \ seconds$			
Spin	1/2			
Magnetic Moment Ratio, μ/p	$3.18334539 \pm 0.00000010$			
Electric Dipole Moment	$3.7 \pm 3.4 \ (10^{-19} \text{ecm})$			