
Systematic Study of Dimuon Azimuthal Angle Reconstruction in SpinQuest

Abinash Pun

(For SpinQuest Collaboration)

New Mexico State University

Oct 30, 2020 2020 Fall Meeting of the Division of Nuclear Physics

Sivers Asymmetry in SpinQuest Drell-Yan

• The Sivers asymmetry arises from a correlation between the intrinsic transverse momentum \vec{k}_T of the parton, and the spin \vec{S} and momentum \vec{p} of the parent nucleon.

$$\vec{S} \cdot (\vec{k}_T \times \vec{p})$$

- \vec{k}_T can't be measured directly but the virtual photon transverse momentum $\vec{q}_T = \vec{k}_T^q + \vec{k}_T^{\overline{q}}$ can be.
- If the spin is transverse to the beam direction, then:

$$\vec{S}_{\perp} \cdot (\vec{q}_T \times \vec{p}) = (\vec{S}_{\perp} \times \vec{q}_T) \cdot \vec{p} = S_{\perp} q_T p \sin(\phi_T - \phi_{q_T})$$

• If the $\vec{k}_T^{\, \overline{q}}$ of the anti-quark in the polarized target proton is correlated to the spin, then it will create the azimuthal **asymmetry**

Thus, it is very important to reconstruct the ϕ_{q_T} distribution to extract the Sivers asymmetry

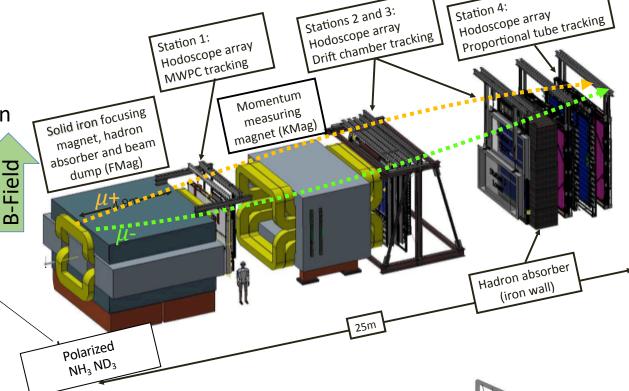
 ϕ_{q_T} = Azimuth angle of \vec{q}_T in detector rest frame

More details in ϕ_T = Azimuth angle of target spin direction

Forhad's talk

SpinQuest: Spectrometers

C.A. Aidala et al., Nu In, volume 930, 49 (2019)

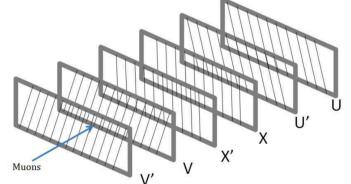

Station 4:

Four tracking stations

Drift Chambers; St. 1, 2 & 3

Proportional tube: St. 4

For muon identification



Drift Chambers

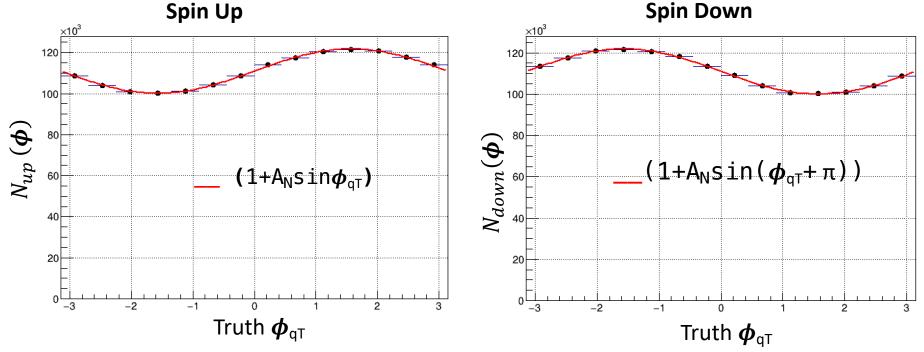
x-, y- positions of muon track

120 GeV p beam

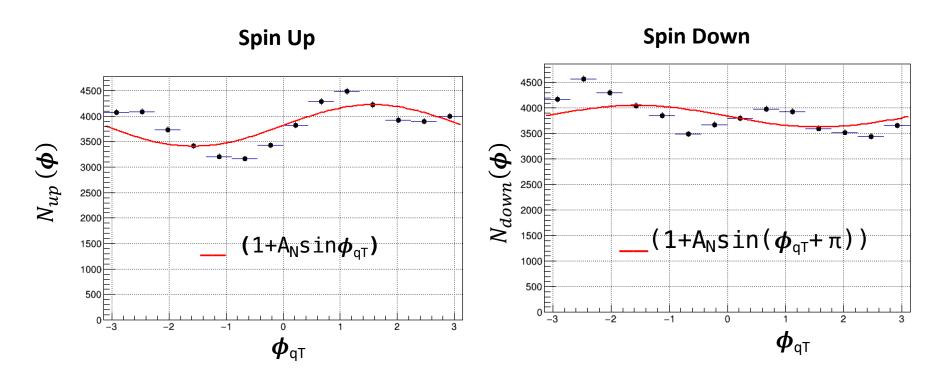
- Principle: Ionization Chamber
- 6 planes of wires in each station

Rough structure of Drift Chamber

Reconstructing Azimuthal Asymmetry


Precise extraction of the Sivers asymmetry largely depends on how well the azimuthal angle, $m{\phi}_{\rm qT}$, of the dimuon can be reconstructed

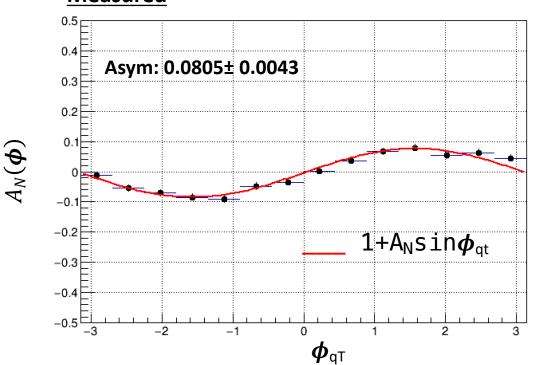
Strategy

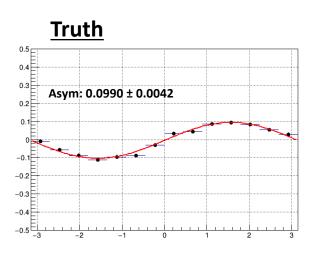

- Generate known asymmetry (spin up and spin down) in dimuon azimuthal distribution in the truth level
- Reconstruct dimuon azimuthal distribution after full detector simulation
- Unfold the measured azimuthal distribution
 - Response matrix with separate set of unpolarized MC simulation.
- Use ratio method for extracting the asymmetry from unfolded dimuon azimuthal distribution

Generated Asymmetry

- Introduced asymmetry of $A_N = 0.1$ in the azimuthal distribution of dimuon at generator level
- Spin Up set: azimuthal distribution of $[1+A_N*\sin(\boldsymbol{\phi}_{qT})]$
- Spin Down set: azimuthal distribution of $[1+A_N*\sin(\boldsymbol{\phi}_{qT}+\pi)]$

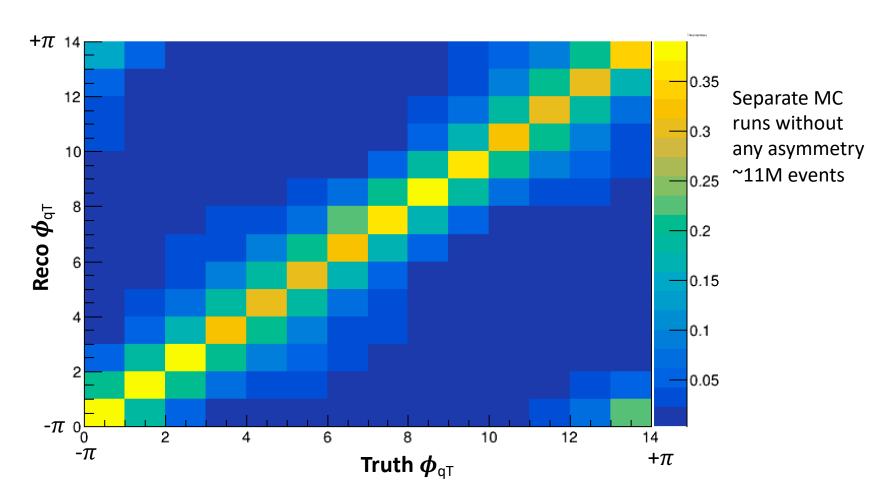
Reconstructed Azimuthal Distribution



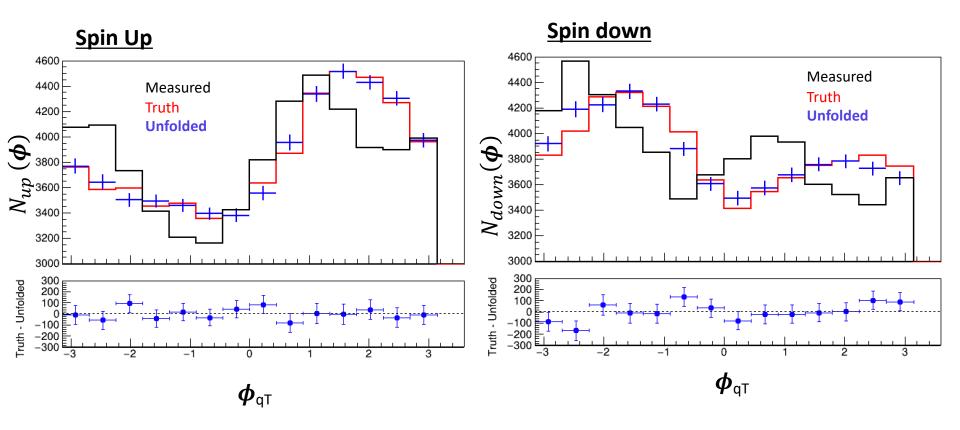

• Azimuthal distribution is distorted by detector acceptance (which has an approximately $\cos 2m{\phi}_{\rm qT}$ shape) and by smearing in reconstruction

Reconstructed Phi (ϕ_{aT}) Asymmetry

$$A_N(\boldsymbol{\phi}) = \frac{N_{up}(\boldsymbol{\phi}) - N_{down}(\boldsymbol{\phi})}{N_{up}(\boldsymbol{\phi}) + N_{down}(\boldsymbol{\phi})}$$

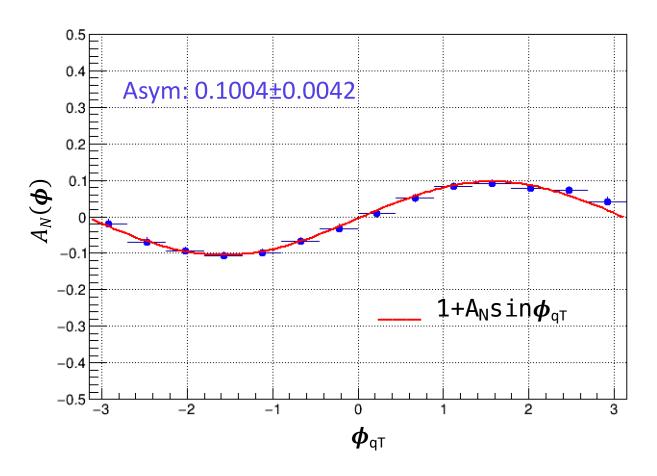

- Ratio method cancel out the various effects including acceptance, but the smearing doesn't.
- Magnitude of extracted asymmetry is lower than the generated one.
- We will unfold the smearing effects to restore the original asymmetry

Unfolding Method


- Method to remove the known effects of systematic biases, measurement resolution to determine the "true" distribution
- Response Matrix (R): Maps the "true" distribution on to the measured one
 - For 1-D case, $R_{ij} = p(r \in (\Delta r)_i | t \in (\Delta t)_j)$; the conditional probability that a selected event, generated in a bin i, is reconstructed in a bin j.
 - $M = RT + \beta$ (Matrix form, β background), M: Measured and T: Truth vector
 - The response matrix is usually determined using Monte Carlo simulation (training), with the true values coming from the generator output.
- The unfolding procedure reconstructs the true T distribution from the measured M distribution using the Response matrix R $T = R^{-1}M$

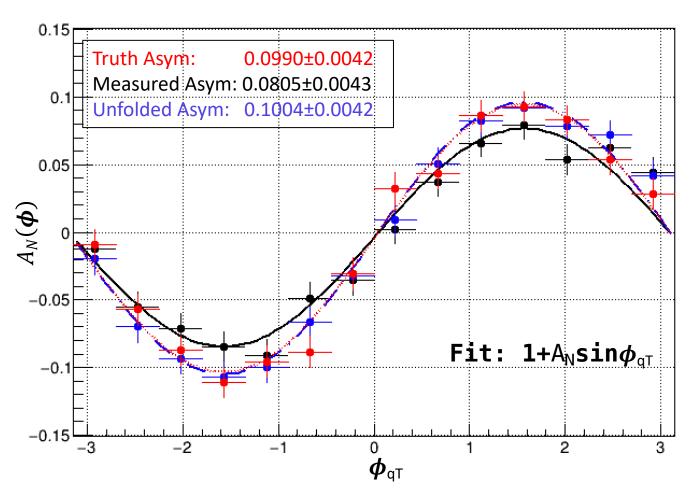
Response Matrix

 $R_{ij} = p(r \in (\Delta r)_i | t \in (\Delta t)_j)$; the conditional probability that a selected event, generated in a bin i, is reconstructed in a bin j.


Dimuon Azimuthal Distribution

- Iterative Bayesian method of unfolding is used with RooUnfold software <u>arXiv:1105.1160</u>
- The unfolded distribution agrees with the truth distribution within the statistical uncertainties

Unfolded Asymmetry


$$A_N(\boldsymbol{\phi}) = \frac{N_{up}(\boldsymbol{\phi}) - N_{down}(\boldsymbol{\phi})}{N_{up}(\boldsymbol{\phi}) + N_{down}(\boldsymbol{\phi})}$$

Original asymmetry restored from unfolded distribution

Asymmetry

$$A_N(\boldsymbol{\phi}) = \frac{N_{up}(\boldsymbol{\phi}) - N_{down}(\boldsymbol{\phi})}{N_{up}(\boldsymbol{\phi}) + N_{down}(\boldsymbol{\phi})}$$

Summary and Outlook

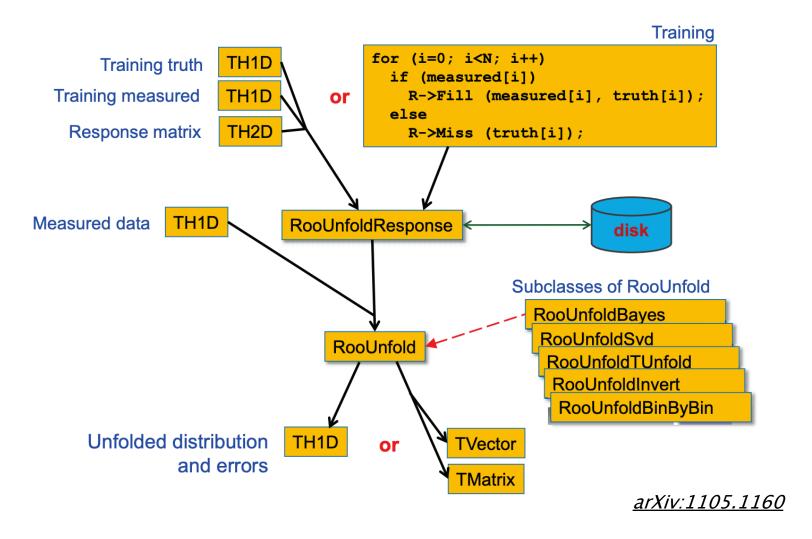
- Systematic study of dimuon azimuthal angle ($oldsymbol{\phi}_{ text{qT}}$) reconstruction
- Iterative Bayesian method with RooUnfold software is used for unfolding the measured azimuthal distribution
- Asymmetries are calculated with ratio method using the measured, truth and unfolded azimuthal distribution

Azimuthal Distribution	Asymmetry $A_N(\phi) = \frac{N_{up}(\phi) - N_{down}(\phi)}{N_{up}(\phi) + N_{down}(\phi)}$
Truth (Generated MC)	0.0990 ± 0.0042
Measured	0.0805 ± 0.0043
Unfolded (Iterative Bayesian)	0.1004 ± 0.0042

 Unfolded azimuthal distribution using Iterative Bayesian method restored the generated truth

Work in Progress:

- Include systematic errors
- Study other unfolding methods


RooUnfold

- Framework for unfolding using ROOT classes
- Methods available:
 - Unregularized
 - 1. matrix inversion (RooUnfoldInvert)
 - using bin-by-bin correction factors, with no inter-bin migration (RooUnfoldBinbyBin)

Regularized

- 1. Iterative Bayes method (RooUnfoldByes)
- Iterative, Dynamically Stabilized (IDS) unfolding (RooUnfoldIds)
- 3. Singular Value Decomposition (SVD) method (RooUnfoldSVD)
- 4. TUnfold (RooUnfoldTUnfold)

RooUnfold classes

10/16/20

Sivers Effect in the Nucleon

Reasons for the Asymmetry

Phys. Rev. D **70**, 117504 (2004) Phys. Rev. D **67**, 074010 (2003)

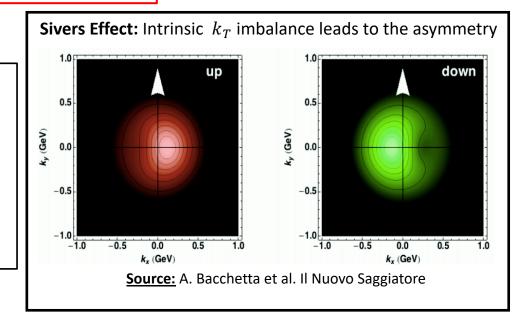
The number density of unpolarized quarks in a transversely polarized proton:

$$f_{q/p^{\uparrow}}(x_B, \vec{k}_T) = f_1^q(x_b, k_T^2) - f_{1T}^{\perp q}(x_B, k_T^2)$$

 $\frac{(\hat{P} \times \vec{k}_T) \cdot \vec{S}}{m_p}$

The \vec{k}_T distribution of quarks in a transversely polarized proton can be **asymmetric** and known as "Sivers effect".

Gives correlation between \vec{k}_T and \vec{S}


 f_1^q = Unpolarized quark density.

 $f_{1T}^{\perp q}(x_B, \vec{k}_T) = Sivers function.$

 \vec{S} = Spin polarization vector.

 \vec{P} = Three momentum of the proton.

 \vec{k}_T = Intrinsic transverse momentum of unpolarized quarks.

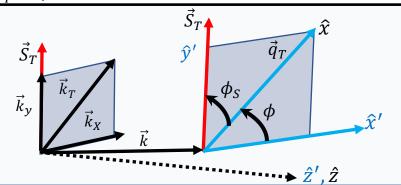
Sea-quark Sivers Asymmetry from Polarized Drell-Yan

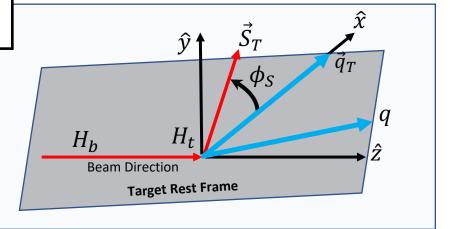
The Drell-Yan cross section in terms of Sivers asymmetry:

$$\sigma_{DY}^{\uparrow\downarrow} = \frac{d \ \sigma^{LO}}{d^4 q \ d\phi_S} \ \propto 1 \pm |S_T| \ \sin \phi_S \ A_T^{\sin \phi_S}$$

Phys. Rev. D 79, 034005 (2009), PRL 119, 112002 (2017)

$$A(\phi_S) = \frac{1}{|S_T|} \frac{\sigma_{DY}^{\uparrow} - \sigma_{DY}^{\downarrow}}{\sigma_{DY}^{\uparrow} + \sigma_{DY}^{\downarrow}} = \sin \phi_S A_T^{\sin \phi_S}$$


 \dot{S}_T = Target spin vector


 \hat{x} , \hat{y} , \hat{z} , is target rest frame = TF; $\hat{x} = \hat{q}_T$, $\hat{y} = \hat{z} \times \hat{q}_T$

 $\hat{x}', \hat{y}', \hat{z}'$ is detector rest frame = DF

 \vec{q}_T = Dimuon's transverse momentum

 \vec{k}_T = Quark's transverse momentum

- 1. $\sigma_{DY}^{\uparrow\downarrow}$ is the Drell-Yan cross section and $A_T^{\sin\phi_S}$ is the Sivers asymmetry.
- Azimuthal angle ϕ_S in TF and ϕ in DF can be written as $\phi_S = (\frac{\pi}{2} \phi)$.