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Why Care About the Hardware?

• Get the most out of this week
• Be able to ask better questions and understand the answers
• Architecture changes can force new design and implementation strategies

– Prevent programming mistakes 
– Make educated decisions

• Exploit the hardware to your advantage (performance)
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Why Care About HPC Hardware?

• High-Performance Computing (HPC)
– Aggregate computing power in order to deliver far more capacity than a single computer
– Supercomputers

• Some problems demand it from the onset; many problems evolve to need it
– When you outgrow your laptop, desktop, departmental server
– Ask: do you need greater capability, or just capacity?
– Either way, HPC clusters run lots of High-Throughput Computing (HTC) jobs

HPC HTC
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Moore’s Law

• Number of transistors doubles 
ever 18-24 months

• More transistors = better, right? 
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The Free Lunch is Over

https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/

The Free Lunch

Vectorization

Parallelization
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Top 500 Supercomputers 

https://www.nextplatform.com/2016/06/20/china-topples-united-states-top-supercomputer-user/

https://www.top500.org
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Why Talk About Intel Architecture?

https://en.wikipedia.org/wiki/TOP500
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Zoom In On A Cluster 

• A cluster is just connected collection of computers called nodes
• The high-speed network that connects the cluster is called the interconnect
• A single, unconnected node is usually just called a server
• Entire clusters, as well as stand-alone servers, are sometimes referred to as 

machines
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Parallel Computers

HPC Cluster: the vast majority of HPC systems
– A collection of servers connected to form a single entity

– Each is essentially a self-contained computer
– OS with CPU, RAM, hard drive, etc. 

– Stored in racks in a dedicated machine room
– Networked together a via low-latency interconnect

• Ethernet < InfiniBand, Omni-Path (Intel)
– Interconnect extends to shared storage

SMP System: Symmetric Multi-Processing
– CPUs all share memory – essentially one computer
– Expensive, likely needed for a unique purpose

• Huge memory, huge OpenMP jobs
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Basic Cluster Layout
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Nodes Are Discrete Systems

• Memory address space
– Range of unique 

addresses

• Separate for each node
• Can’t just access all 

memory in cluster
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Clusters With Accelerators

• “Heterogeneous” system architecture
• Accelerators: GPUs, typically

– Or FPGAs, etc.
– Node can have multiple accelerators

• Programmable with MPI + x
– Where x = OpenMP, OpenACC, CUDA, …

• Increases computational power 
– Increases FLOPS / Watt

• Trending in Top500.org 
– Strong shift toward systems with 

accelerators started ~10 years ago
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Multicore Processors

• Nearly all modern processors are multicores
– In servers: Intel Xeon, AMD EPYC, IBM Power
– In laptops: Intel, AMD, ARM
– In GPUs, phones, and mobile devices as well

• Most have vector units, multiple cache levels
• Require special care to program

– Multi-threading, vectorization, …
– The free lunch is over!

• Instruction sets can vary
– Intel and AMD: x86_64 base, not identical
– IBM Power, ARM, NVIDIA, etc. all differ
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Motherboard Layout

• Typical nodes have 1, 2, or 4 processors
– 1: laptop/desktops/servers
– 2: servers/clusters
– 4 (or more): high end special use

• Each processor is attached to a socket
• Each processor has multiple cores
• CPU can refer to a core... or a processor
• Processors connected via interconnect
• Memory attached to processor/socket

– Programmer sees single node 
memory address space
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Motherboard Layouts, Past and Present
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Symmetric MultiProcessing (SMP) –
Memory access is uniform, as all traffic goes via north 
bridge, but is bottlenecked by front side bus (FSB) and 
north-bridge-to-RAM bandwidth limitations. Current 
motherboards have no north bridge; the south bridge 
is now referred to as the I/O hub or just the chipset.

Non-Uniform Memory Access (NUMA) –
Physical memory is partitioned per CPU, with a fast 
interconnect to link CPUs to each other and to I/O.
This removes bottlenecks but memory is no longer 
uniform – there may be 30-50% extra latency to 
access remote memory, more in multi-hop systems.

Intel QPI/UPI,
AMD HT



Example: Intel Skylake Scalable Processor

“System on a Chip” (SoC)
• Core: “A complete ensemble of 

execution logic, and cache 
storage as well as register files 
plus instruction counter (IC) for 
executing a software process or 
thread.” (Jarp)

UPI – Intel Ultra Path Interconnect
PCIe – Peripheral Component

Interconnect Express
DDR – Double Data Rate
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Skylake Core Microarchitecture

Key Components:

Control logic
Register file
Functional Units
• ALU (arithmetic and 

logic unit)
• FPU (floating point 

unit)

• Data Transfer
• Load / Store

Too much!
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Vectorization Terminology

• New generations of CPUs add capabilities and instructions
– Each core can have one or more vector processing units (VPUs) and vector registers
– Machine (assembly) commands are often added to take advantage of new hardware

• Vector instructions are also called SIMD = Single Instruction Multiple Data
– x86_64 has Streaming SIMD Extensions (SSE), Advanced Vector Extensions (AVX)
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Vector (SIMD)

One operation 
One result

One operation 
Multiple results

Scalar (SISD)

for (int i=0; i<N; i++) {
c[i]=a[i]+b[i];  }

At inner-most loop level
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HPC Performance Metrics

• FLOP = Floating-point Operation
– FLOPs = Floating-point Operations
– FLOPS = Floating-point Operations Per Second
– Often write FLOP/s or FLOP/sec to avoid ambiguity

• Calculation for single processor
– Typically Double Precision (64-bit)
– FLOPS = (Clock Speed)*(Cores)*(FLOPs/cycle)

• FLOPS/$, FLOPS/Watt are useful metrics too
• Bandwidth metrics (“giga” usually means 109)

– GB/s = gigabytes/sec
– Gb/s = gigabits/sec

N.B. - not to be confused 
with a Hollywood flop!
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Intel Xeon (Server) Architecture Codenames

• Number of FLOP/s depends on width, number, and abilities of VPUs in a core
• Per-core rates, double precision (64-bit doubles – twice this for 32-bit floats)

– Pentium 4*… Nehalem/Westmere (SSE2… SSE4): 
• 4 DP FLOPs/cycle: 128-bit addition + 128-bit multiplication

– Sandy Bridge/Ivy Bridge (AVX)
• 8 DP FLOPs/cycle: 256-bit addition + 256-bit multiplication

– Haswell/Broadwell (AVX2)
• 16 DP FLOPs/cycle: two, 256-bit FMA, fused multiply-add 

– KNL/Skylake (AVX-512)
• 32 DP FLOPs/cycle: two**, 512-bit FMA

– Cascade Lake (AVX-512 VNNI with INT8)
• 32 DP FLOPs/cycle: two, 512-bit FMA

24
*Pentium III (1999) introduced 128-bit SSE for 4 single-precision floats
**Some Skylake-SPs can do only one 512-bit FMA = (a × b + c), per core 
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Memory Hierarchy
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Growth in Memory Performance Lags CPU

http://web.sfc.keio.ac.jp/~rdv/keio/sfc/teaching/architecture/architecture-2008/hennessy-patterson/Ch5-fig02.jpg

Gap grows at 
50% per year!

If your data is served by RAM and not caches it doesn’t matter if you 
have vectorization. 

To increase performance, try to minimize memory footprint.
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File I/O

“A supercomputer is a device for turning compute-bound problems 
into I/O-bound problems.”

-- Ken Batcher, Emeritus Professor of Computer Science at Kent State University
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Types of Disk

• Hard Disk Drive (HDD)
– Traditional Spinning Disk 

• Solid State Drives (SSD)
– ~5x faster than HDD

• Non-Volatile Memory Express (NVMe)
– ~5x faster than SSD

Photo Credit: Maximum PC 30



Types of Filesystems - NFS

• NFS – Network File System
– Simple, cheap, and common
– Single filesystem across network
– Not well suited for large throughput
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Parallel Filesystems

• GPFS (General Parallel Filesystem – IBM)
– Designed for parallel read/writes
– Large files spread over multiple storage devices
– Allows concurrent access
– Significantly increase throughput

• Lustre
– Similar idea
– Different implementation

• Parallel I/O library in software
– Necessary for performance 

realization
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Heterogeneous Systems on the Rise

• The computing landscape 
changes rapidly 

• 60% of TOP500 systems now 
have accelerators (June 2022)

• Graphics processing units 
(GPUs) are by far the most 
common type of accelerator

34https://www.top500.org/statistics



GPU and CPU Performance Trends

35https://docs.nvidia.com/cuda/archive/9.1/pdf/CUDA_C_Programming_Guide.pdf



General Purpose GPUs

• General Purpose GPU (GPGPU)
– NVIDIA Pascal/Volta/Ampere…
– AMD Radeon Instinct, others

• Always attached to a CPU host
– Data travels to device over PCIe
– NVIDIA NVLink has higher speed

• Not compatible with x86
• Programmable sort-of-like CPUs

– NVIDIA CUDA: extensions to C++
– OpenCL, OpenACC, OpenMP, …
– Need compatible compiler, libraries
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NVIDIA Volta V100



NVIDIA Tesla V100 (V for “Volta”)

• 80 Streaming Multiprocessors (SMs)
– Analogous to CPU cores
– Execute only SIMD-type instructions

• One SM holds many “CUDA cores”
– Analogous to vector lanes
– 64 FP32 CUDA cores
– 64 INT32 CUDA cores
– 32 FP64 CUDA cores

• One SM also has 8 tensor cores
– Fast 4x4 matrix multiplications in FP16

• Device memory: 32 GB of HBM2
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NVIDIA Execution Model

• SIMT = Single Instruction Multiple Thread
– Operations apply to “warps” of 32 threads
– A warp of threads is like a CPU vector
– Not all that different from SIMD

• CUDA core = scalar (thread) processor
– Instructions only go to groups of 32
– A thread block must be split into warps of 32
– Thus, an SM is like 1 or 2 vector units in a CPU

• One thread block maps to one SM
• A grid of thread blocks can be spread over 

the entire device



R.I.P. Intel Xeon Phi, a.k.a. Intel MIC

• MIC: Many Integrated Cores
– x86-compatible multiprocessor architecture

• Programmable just CPUs
– MPI, OpenMP, OpenCL, …
– Same compilers as CPUs

• But many cores, fast MCDRAM like GPUs
– Intel’s “answer” to the GPU challenge

• Started out as a coprocessor
– Data travels over PCIe
– Became main processor in 2nd generation

• Eventually merged into Xeon line
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Processors vs. PCIe Devices, Circa 2019
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M. Lefebvre

Xeon Gold 5122 
(2017)

Xeon Platinum 
8280M  (2019)

Xeon Phi 7290F 
(2017)

NVIDIA V100 
(2017)

Cores 4 28 72 84 SMs

Logical Cores 8 56 288 5120 cores

Clock rate 3.6 – 3.7 GHz 2.5 – 3.8 GHz 1.5-1.7 GHz 1530 MHz

Theoretical
GFLOPS (double)

460.8 2240 3456 7450

SIMD width 512 bit 512 bit 512 bit Warp of 32 
threads

Memory -- -- 16 GB MCDRAM
384 GB DDR4

32 GB

Memory B/W 127.8 GB/s 127.8 GB/s 400+ GB/s MCDRAM
115.2 GB/s RAM

900 GB/s

Approx. Unit Price  $1,200 $12,000 $3,400 $9,000 



Demystifying the Cloud

• “Regular” computers, just somewhere else
• Provide users with remote virtual machines or containers
• Can be used for anything:

– Mobile services, website hosting, business applications, …
– Data analysis, high performance computing

• Providers
– Amazon Web Services (AWS)
– Microsoft Azure
– Google Cloud Platform (GCP)
– Oracle Cloud
– Lots of others
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Cloud Computing Pros and Cons

• Advantages:
– Potentially lower cost

• Pay as you go
• Save on sysadmins and infrastructure
• Economy of scale

– Scaling up or down as needed
• Can be used to run overflow from a regular data center

– Access to a wide range of hardware 

• Challenges:
– Data movement 

• Expensive and time consuming
– Security, privacy, …
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What We Didn’t Talk About

• Microarchitecture details (ALU, FPU, pipelining…)
• Memory bandwidth and latency
• Cache lines and cache coherence
• IBM (Power) or AMD processors
• FPGAs, Google TPUs, NPUs, …
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Resources & References

• Very nice glossary: https://cvw.cac.cornell.edu/main/glossary
• J. Hennessy, D. Patterson, Computer Architecture: A Quantitative Approach, 

6th edition (2017), ISBN 978-0128119051
• U. Drepper, What Every Programmer Should Know About Memory, 

http://people.redhat.com/drepper/cpumemory.pdf
• NVIDIA Volta Architecture Whitepaper

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-
whitepaper.pdf
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