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Vector Parallelism: Motivation

• CPUs are no faster in GHz than they were 15 years ago
– Power limits! “Slow” transistors are more efficient, cooler

• Yet process improvements have made CPUs denser
– Moore’s Law! Add 2x more “stuff” every 18–24 months

• One way to use extra transistors: more cores
– Dual-core Intel chips arrived in 2005; counts keep growing
– Up to 40 in Intel Xeon “Ice Lake”, 64 in AMD EPYC “Milan”

• Another solution: SIMD or vector operations
– First appeared on Intel Pentium with MMX in 1996
– Vectors have ballooned: 512 bits (16 floats) in Intel Xeon
– Can vectorization increase speed by an order of magnitude?
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Die shot of 28-core Intel Skylake-SP
Source: wikichip.org



What Moore’s Law Buys Us, These Days…
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GitHub link

https://github.com/karlrupp/microprocessor-trend-data/blob/master/48yrs/48-years-processor-trend.png


A Third Dimension of Scaling

• Along with scaling out and up, you can “scale deep”
– Arguably, vectorization may be as important as multithreading

• Example: Intel processors in TACC Stampede2 cluster

– 1960 Xeon (SKX, ICX) + 3752 Xeon Phi (KNL) nodes; 48–80 cores
– Each core does up to 64 operations/cycle on vectors of 16 floats
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64 ops/cycle/core

48 to 80 cores per nodeIn the cluster:
5712 nodes



How It Works, Conceptually
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SIMD: Single Instruction, Multiple Data
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Three Ways to Look at Vectorization

1. Hardware Perspective: Run vector instructions 
involving special registers and functional units 
that allow in-core parallelism for operations on 
arrays (vectors) of data.

2. Compiler Perspective: Determine how and when 
it is possible to express computations in terms of 
vector instructions.

3. User Perspective: Determine how to write code 
with SIMD in mind; e.g., in a way that allows the 
compiler to deduce that vectorization is possible.
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Hardware Perspective

• SIMD = Single Instruction, Multiple Data
– Part of commodity CPUs (x86, x64, PowerPC) since late ’90s

• Goal: parallelize computations on vector arrays
– Line up operands, execute one op on all simultaneously

• SIMD instructions have gotten speedier over time
– Initially: several cycles for execution on small vectors
– Intel AVX introduced pipelining of some SIMD instructions
– Now: multiply-and-add large vectors on every cycle

• Intel’s latest: Skylake-SP, Cascade Lake, Ice Lake…
– 2 VPUs (vector processing units) per core, in most models
– 2 ops/VPU if they do FMAs (Fused Multiply-Add) every cycle
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Partial block diagram of SKL-SP core
Source: wikichip.org



Evolution of Vector Registers, Instructions

• A core has 16 (SSE, AVX) or 32 (AVX-512) vector registers
• In each cycle, VPUs can access registers, do FMAs (e.g.)
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Peak Flop/s, and Why It’s Basically a Fiction

• Peak flop/s (FLoating-point OPs per second) is amplified 2x by vector FMAs
• Example: floats on Intel Xeon Gold 6130 “Skylake-SP” @ 2.1 GHz

– (2 x 16 flop/VPU) x (2 VPUs/core) x (16 cores) x 2.1 GHz = 2150 Gflop/s  (really?)
• Dubious assumption #1: no slow operations like division or square root

– Peak rate assumes exactly 1 add and 1 multiply (= 2 flops) per VPU per cycle
• Dubious assumption #2: data are loaded and stored with no delay

– Implies heavy reuse of data in vector registers, perfect prefetching into L1 cache
• Dubious assumption #3: clock rate is fixed

– In reality: if all cores are active, Xeon will slow AVX-512 by ~10% to prevent overheating
• Dubious assumption #4: every instruction in the code is vectorized

– In reality: serial fraction of work S limits the factor in blue to 1/S (Amdahl’s Law)
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A Quick Word on Amdahl’s Law
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• SIMD means parallel, so Amdahl’s Law is in effect!
– Linear speedup is possible only for perfectly parallel code
– Amdahl’s asymptote of the speedup curve is 1/(serial fraction)
– Speedup of 16x is unattainable even if 99% of work is vector



Instructions Must Do More Than Just Flops…

• Data Access: Load/Store, Pack/Unpack, Gather/Scatter
• Data Prefetch: Fetch, but don’t load into a register
• Vector Rearrangement: Shuffle, Bcast, Shift, Convert
• Vector Initialization: Random, Set
• Logic: Compare, AND, OR, etc.
• Math: Arithmetic, Trigonometry, Cryptography, etc.
• Variants of the Above… Mask, Swizzle, Implicit Load…

– Combine an operation with data selection or movement

• This is why AVX-512 comprises over 4000 instructions
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Extension ICX SKX KNL

AVX512F
Foundation X X X

AVX512CD
Conflict Det. X X X

AVX512BW
Byte & Word X X

AVX512DQ
Dble. & Quad. X X

AVX512VL
Vector Length X X

AVX512PF
Prefetch X

AVX512ER
Exp. & Recip. X

AVX512VNNI
Neural Net. X

AVX512…etc.
ICX additions X



How Do You Get Vector Speedup?

• Program the key routines in assembly?
– Ultimate performance potential, but only for the brave

• Program the key routines using intrinsics?
– Step up from assembly; useful in spots, but risky

ü Link to an optimized library that does the heavy lifting
– Intel MKL, e.g., written by people who know all the tricks
– BLAS is the portable interface for doing fast linear algebra

ü Let the compiler figure it out
– Relatively “easy” for user, “challenging” for compiler
– Compiler may need some guidance through directives
– Programmer can help by using simple loops and arrays
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Compiler Perspective

• Vectorization is effectively loop unrolling
– In effect, the compiler unrolls by 4 iterations, if 4 elements fit into a vector register

for (i=0; i<N; i++) {
c[i]=a[i]+b[i];

}

for (i=0; i<N; i+=4) {
c[i+0]=a[i+0]+b[i+0];
c[i+1]=a[i+1]+b[i+1];
c[i+2]=a[i+2]+b[i+2];
c[i+3]=a[i+3]+b[i+3];

}

Load a(i..i+3)
Load b(i..i+3)
Do 4-wide a+b->c
Store c(i..i+3)
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Loops That the Compiler Can Vectorize

Basic requirements of vectorizable loops:
• Number of iterations is known on entry

– No conditional termination (“break” statements, while-loops)

• Single control flow; no “if” or “switch” statements
– Note, the compiler may convert “if” to a masked assignment!

• Must be the innermost loop, if nested
– Note, the compiler may reorder loops as an optimization!

• No function calls but basic math: pow(), sqrt(), sin(), etc.
– Note, the compiler may inline functions as an optimization!

• All loop iterations must be independent of each other
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Compiler Options and Optimization

• GCC vectorizes with  –O2 –ftree-vectorize or -O3 

– Default for x86_64 is SSE (see output from gcc -v)
– To tune vectors to the host machine:  -march=native
– To optimize across objects (e.g., to inline):  -flto
– For AVX-512, you must add  -mprefer-vector-width=512

• Intel Classic Compilers vectorize with simply -O2
– Default is SSE instructions, 128-bit vector width (4 floats)
– To tune vectors to the host machine:  -xHost
– To optimize across objects (e.g., to inline functions):  -ipo
– For AVX-512, you must add -qopt-zmm-usage=high
– Says AVX-512 isn’t a great default; AMD doesn’t even have it
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Architecture-Specific Compiler Options

• GCC compilers (+ LLVM-based, like Clang, Intel oneAPI,…)
– Use  -mavx2 -mfma or  -march=haswell to compile for AVX2
– Careful! Don’t get FMAs unless  -mfma accompanies  -mavx2
– GCC 4.9+ has specific options for most AVX-512 extensions
– GCC 5.3+ has -march=skylake-avx512
– GCC 8.1+ has  -march=icelake-server (Intel released ICX late)
– GCC 9.1+ has  -march=cascadelake

• Intel Classic compilers: most GCC options work, plus…
– Use  -xCORE-AVX2 or  -xHASWELL to compile for AVX2
– For SKL-SP and later:  -xCORE-AVX512
– For Xeon + KNL:  -xCOMMON-AVX512 (pure KNL is -xKNL)
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Example Code that Does 2 Billion FMAs
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int main(int argc, char *argv[]) {

/* Declare arrays small enough to stay in L1 cache.
Assume the compiler aligns them correctly. */

double a[ARRAY_SIZE], b[ARRAY_SIZE], c[ARRAY_SIZE];
int i, t, rc;
double m = 1.5, w1, w2, d = 0.0;
char modelname[80];

/* Initialize a, b and c arrays */
for (i=0; i < ARRAY_SIZE; i++) {

a[i] = 0.0; b[i] = i*1.0e-9; c[i] = i*0.5e-9;
}

/* Perform operations with arrays many, many times */
w1 = dtime();
for (t=0; t < NUMBER_OF_TRIALS; t++) {

for (i=0; i < ARRAY_SIZE; i++) {
a[i] += m*(m*b[i] + c[i]);

}
}
w2 = dtime();

/* Print total time and processor type used in the run.
Print a result so array ops aren't optimized away. */

for (i=0; i < ARRAY_SIZE; i++) d += a[i];
printf("d = %f   time = %f\n", d, w2 - w1);
rc = get_model_name(modelname);
if (rc == 0) printf("%s", modelname);

}

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/time.h>
#define ARRAY_SIZE 1024
#define NUMBER_OF_TRIALS 1000000

double dtime() {
double tseconds = 0.0;
struct timeval my_t;
gettimeofday(&my_t, NULL);
tseconds = (double)(my_t.tv_sec + my_t.tv_usec * 1.0e-6);
return (tseconds);

}

int get_model_name(char *mname) {
FILE *fp;
fp = fopen("/proc/cpuinfo", "r");
if (fp == NULL) {

strcpy(mname, "(/proc/cpuinfo is not readable)\n");
return(1);

}
/* model name should be on the fifth line */
for (int i=0; i < 5; i++) fgets(mname, 80, fp);
fclose(fp);
return(0);

}



Exercise 1 (to do later)

• The code on the preceding slide is available at these links:
– https://godbolt.org/z/z5jecaae8
– https://indico.cern.ch/event/1151367/timetable/

• The top link takes you to the Compiler Explorer website, a great resource that 
lets you try lots of compilers and their options and view assembler output
– DEMO showing how different compiler flags affect vectorization
– You can execute code on the site, too, but it’s not great for benchmarking

• Exercise to try later: using either link above (or the preceding slide), save or 
copy-paste the code into a file named abc_fma.c for benchmarking

• The next two slides guide you through a series of compile-and-run steps to 
show the performance effects of enabling optimization and vectorization
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https://godbolt.org/z/z5jecaae8
https://indico.cern.ch/event/1151367/timetable/


Exercise 1 (cont’d.)

1. Invoke your compiler with no special flags and time a run:

2. Repeat this process for the following sets of options:
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gcc-11 abc_fma.c -o abc_fma
./abc_fma

gcc-11 -O2 abc_fma.c -o abc_fma
gcc-11 -O3 -fno-tree-vectorize abc_fma.c -o abc_fma
gcc-11 -O3 abc_fma.c -o abc_fma
gcc-11 -O3 -msse3 abc_fma.c -o abc_fma
gcc-11 -O3 -march=native abc_fma.c -o abc_fma
gcc-11 -O3 -march=??? abc_fma.c -o abc_fma #take a guess



Exercise 1 (still cont’d.)

3. Your best result should be from -march=native . Why?
– Here is the current list of architectures that gcc knows about
– On a laptop, -mavx2 -mfma may be slightly better or worse

4. Do you get the expected speedup factors?
– SSE registers hold 2 doubles; AVX registers hold 4 doubles
– Recent laptops should be able to do AVX (but not AVX-512)

5. Other things to note:
– Optimization -O3 is degraded by -fno-tree-vectorize 
– Not specifying an architecture at -O3 is equivalent to -msse3
– In icc, vectorization is disabled by –no-vec (after -O2 or -O3)
– Why disable or downsize vectors? To gauge their benefit!
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https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html


Why Not Use an Optimized Library?

• Optimized libraries like 
OpenBLAS may not have the 
exact function you need

• The kernel of abc_fma.c looks 
like a DAXPY, or (aX + Y) with 
doubles… but it isn’t quite…

• The inner loop must be 
replaced by two DAXPY calls, 
not one, and with function 
overhead, the resulting code 
runs several times slower
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for (t=0; t < NUMBER_OF_TRIALS; t++) {
for (i=0; i < ARRAY_SIZE; i++) {

a[i] += m*(m*b[i] + c[i]);
}

}

for (t=0; t < NUMBER_OF_TRIALS; t++) {
cblas_daxpy(ARRAY_SIZE, m*m, b, 1, a, 1);
cblas_daxpy(ARRAY_SIZE, m, c, 1, a, 1);

}



Optimization Reports

Use optimization report options for info on vectorization:
gcc -c -O3 -fopt-info-vec -fopt-info-vec-missed myvec.c

icc -c -O3 -qopt-report=2 -qopt-report-phase=vec myvec.c

The above are equivalent. For GCC, tack on more flags (or -all) for more info.
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n Description of information presented

0 No vector report

1 Lists the loops that were vectorized

2 (default level) Adds the loops that were not vectorized, plus a short reason

3 Adds summary information from the vectorizer about all loops

4 Adds verbose information from the vectorizer about all loops

5 Adds details about any data dependencies encountered (proven or assumed)

For Intel, use =n
to control the 
amount of detail 
in myvec.optrpt



Exercise 2 (to do later)

Let’s examine optimization reports for the abc_fma.c code.
1. Recompile the code with -O3, along with optimization 

reporting (-fopt-info-vec) from the vectorizer.
– Confirm that the inner loops were vectorized as expected.

2. Repeat (1), but this time with vectorization turned off 
(i.e., -fno-tree-vectorize) . Do you get any output?

3. Repeat (1), but now add -fopt-info-vec-missed (loops 
that missed out on vectorization) to see what else the 
compiler tried to do with this code.
– Considering that the main loops ultimately vectorized, you 

may find that gcc gives way too much information here.
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User Perspective

• User’s goal is to supply code that runs well on hardware
• Thus, you need to know the hardware perspective

– Think about how instructions will run on vector hardware
– Try also to combine additions with multiplications
– Furthermore, try to reuse everything you bring into cache!

• And you need to know the compiler perspective 
– Look at the code like the compiler looks at it
– At a minimum, set the right compiler options!
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Vector-Aware Coding

• Know what makes codes vectorizable at all
– The “for” loops (C) or “do” loops (Fortran) that meet constraints

• Know where vectorization ought to occur
• Arrange vector-friendly data access patterns (unit stride)
• Study compiler reports: do loops vectorize as expected?
• Implement fixes: directives, compiler flags, code changes

– Remove constructs that hinder vectorization
– Encourage/force vectorization when compiler fails to do it
– Engineer better memory access patterns

• Turn to performance tools, if further speedup is desired
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Challenge: Loop Dependencies

• Vectorization changes the order of computation compared to sequential case
– Groups of computations now happen simultaneously

• Compiler must be able to prove that vectorization will produce correct results
• Key criterion: “unrolled” loop iterations must be independent of each other

– Wider vectors means that more iterations must be independent
– Not everything that looks like a dependency truly is one

• Compiler must perform dependency analysis prior to vectorizing
– It will make conservative assumptions about dependencies, unless guided by directives
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Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1]  →  a[1] = 0 + 6    →  a[1] = 6
a[2] = a[1] + b[2]  →  a[2] = 6 + 7    →  a[2] = 13
a[3] = a[2] + b[3]  →  a[3] = 13 + 8  →  a[3] = 21
a[4] = a[3] + b[4]  →  a[4] = 21 + 9  →  a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++) 
a[i] = a[i-1] + b[i];
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Loop Dependencies: Read After Write

Consider adding the following vectors in a loop, N=5:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying each operation sequentially:
a[1] = a[0] + b[1]  →  a[1] = 0 + 6    →  a[1] = 6
a[2] = a[1] + b[2]  →  a[2] = 6 + 7    →  a[2] = 13
a[3] = a[2] + b[3]  →  a[3] = 13 + 8  →  a[3] = 21
a[4] = a[3] + b[4]  →  a[4] = 21 + 9  →  a[4] = 30

a = {0, 6, 13, 21, 30}

for(i=1; i<N; i++) 
a[i] = a[i-1] + b[i];
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Loop Dependencies: Read After Write

Now let’s try vector operations:
a = {0,1,2,3,4}
b = {5,6,7,8,9}

Applying vector operations, i={1,2,3,4}:
a[i-1] = {0,1,2,3}   (load)
b[i]    = {6,7,8,9}   (load)
{0,1,2,3} + {6,7,8,9} = {6, 8, 10, 12}  (operate)
a[i] = {6, 8, 10, 12}   (store)

a = {0, 6, 8, 10, 12} ≠ {0, 6, 13, 21, 30}    NOT VECTORIZABLE

for(i=1; i<N; i++) 
a[i] = a[i-1] + b[i];
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Loop Dependencies: Synopsis

• Read After Write
– Also called “flow” dependency
– Variable written first, then read
– Not vectorizable

• Write After Read
– Also called “anti” dependency
– Variable read first, then written
– Vectorizable

for(i=1; i<N; i++) 
a[i] = a[i-1] + b[i];

for(i=0; i<N-1; i++) 
a[i] = a[i+1] + b[i];
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Loop Dependencies: Synopsis

• Read After Read
– Not really a dependency
– Vectorizable

• Write After Write
– a.k.a “output” dependency
– Variable written, then re-written
– Not vectorizable
– Exception: array sums and products (+=, *=) are vectorizable

for(i=0; i<N; i++) 
a[i] = b[i%2] + c[i];

for(i=0; i<N; i++) 
a[i%2] = b[i] + c[i];
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Loop Dependencies: Pointer Aliasing

• In C, pointers can hide data dependencies!
– The memory regions that they point to may overlap

• Is this vectorizable?

– …Not if we give it the arguments compute(a,a-1,c)
– In effect, b[i] is really a[i-1] → Read After Write dependency

• Compilers can usually cope, at some cost to performance

void compute(double *a, double *b, double *c) {
for (i=1; i<N; i++) {

a[i] = b[i] + c[i];
}

}
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Dependencies and Optimization Reports

• Loop-carried dependencies are a common reason for vectorization failure
• Optimization reports say where the compiler found  apparent dependencies

– Choose a report level that gives info about places where vectorization was missed

• Remember, the compiler is conservative about dependencies
– Dig into the details, see if the claimed dependencies really exist in the code
– The Intel compiler is generally better than gcc for this because it is more concise

• Even with no dependencies, vectorization is not guaranteed!
– Compiler may fail to vectorize a loop if it has complicated indexing
– Compiler may decline to vectorize a loop if no performance gain is projected
– Reports give information about these situations too
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Exercise 3 (to do later)

1. Make a copy of abc_fma.c called abc_fma_shift.c. Edit it and change the 
innermost of the nested loops to look like this:

2. The above loop has no dependencies. (Why not?) Compile the code with 
vectorization enabled, and request info on loops that missed out:

3. Did gcc vectorize the loop? Look for any “missed” remarks directed at the 
loop on line abc_fma_shift.c:46 – or grep for “complicated access pattern”
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for (i=0; i < ARRAY_SIZE-1; i++) {
a[i+1] += m*(m*b[i] + c[i]);

}

gcc-11 -O3 abc_fma_shift.c -o abc_fma_shift -fopt-info-vec-missed



Loop Dependencies: Vectorization Hints

• Sometimes, it is impossible for the compiler to prove that there is no data 
dependency that will affect correctness
– e.g., unknown index offset, complicated use of pointers

• To stop the compiler from worrying, you can give it the IVDEP (Ignore Vector 
DEPendencies) hint
– It assures the compiler, “It’s safe to assume no dependencies”
– Compiler may still choose not to vectorize based on cost
– Example: assume we know M > vector width in doubles...

void vec1(double s1, int M,  
int N, double *x) {

#pragma GCC ivdep // for Intel, omit GCC
for(i=M; i<N; i++) x[i] = x[i-M] + s1;
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OpenMP 4.0 and Vectorization

• #pragma omp simd
– Motivates the compiler to try harder to vectorize a particular loop
– Is enabled by the special compiler flag -fopenmp-simd (Intel: -qopenmp-simd)
– Can be combined with other OpenMP constructs; use flag -fopenmp (Intel: -qopenmp)
– Has its own set of OpenMP clauses
– May not be required in all instances; in order to vectorize the multithreaded OpenMP 

example below, GCC needs “simd”, Intel doesn’t
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#pragma omp for simd private(x) reduction(+:sum)
for (j=1; j<=num_steps; j++) {

x = (j-0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}



• C99 introduced ‘restrict’ keyword to language
– Instructs compiler to assume addresses will not overlap, ever

• Intel compiler may need extra flags: -restrict -std=c99

Loop Dependencies: Language Constructs

void compute(double * restrict a, double * restrict b, double * restrict c) {
for (i=0; i<N; i++) {

a[i] = b[i] + c[i];
}

}
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Memory Performance and Vectorization

• We have mostly been focusing on faster flop/s, but flop/s don’t happen unless 
data are present
– Moving data from memory is often the rate-limiting step!

• Data (including scalar data + neighbors) travel between RAM and caches in 
groups called “cache lines” that are the exact same size as vectors

• But wait… if data movement is “vectorized”, just like adds and multiplies are 
vectorized, then everything is getting the same speedup, right?
– Um, no. The data rate for RAM is slow, even if it is always “vectorized” in a sense
– Well… loads from L1 cache to registers, and stores from registers to L1, do get 

vectorized. But that’s just the final short step if the data start way out in RAM
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Cache and Alignment

• Optimal vectorization takes you beyond the SIMD unit!
– Cache lines start on 16-, 32-, or 64-byte boundaries in memory
– Sequential, aligned access is much faster than random/strided
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Strided Access

• Fastest usage pattern is “stride 1”: perfectly sequential
– Cache lines arrive in L1d as full, ready-to-load vectors

• Stride-1 constructs:
– Storing data in structs of arrays vs. arrays of structs
– Looping through arrays so their “fast” dimension is innermost

• C/C++: stride 1 on last index (columns)
• Fortran: stride 1 on first index (rows)

do j=1,n
do i=1,n

a(i,j)=b(i,j)*s
end do

end do

for(j=0;j<n;j++) {
for(i=0;i<n;i++) {

a[j][i]=b[j][i]*s;
}

}
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Penalty for Strided Access
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for (i=0; i<4000000*istride; 
i+=istride) {

a[i] = b[i] + c[i]*sfactor;
}

• Striding through memory reduces 
effective memory bandwidth!
– Roughly by 1/(stride)

• Why? For some stride s, data 
must be “gathered” from s cache 
lines to fill a vector register

• It’s worse than non-aligned access
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Diagnosing Cache & Memory Deficiencies

• Really bad stride patterns may prevent vectorization
– The GCC vector info might say, “not vectorized: vectorization is not profitable.”
– The Intel vector report might say, “vectorization possible but seems inefficient”

• Bad stride and other problems may be difficult to detect
– The result is merely poorer performance than might be expected

• Profiling tools like Intel VTune can help
• Intel Advisor makes recommendations based on source
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Conclusions: Vectorization Basics

• The compiler “automatically” vectorizes tight loops
• Write code that is vector-friendly

– Innermost loop accesses arrays with stride one
– Loop bodies consist of simple multiplications and additions
– Data in cache are reused; loads are stores are minimized

• Write code that avoids the potential issues
– No loop-carried dependencies, branching, aliasing, etc.

• This means you know where vectorization should occur
• Optimization reports will tell you if expectations are met

– See whether the compiler’s failures are legitimate
– Fix code if the compiler is right; use #pragma if it is not
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