
FLOATING POINT ARITHMETIC IS NOT REAL

Bei Wang
Princeton University

Fourth Computational and Data Science school for HEP (CoDaS-HEP)

Aug 2, 2022

1D Histogram in ROOT

h
Entries 1e+08
Mean 0.0001135
Std Dev 1.021

5− 4− 3− 2− 1− 0 1 2 3 4 50

2

4

6

8

10

12

14

16

610× h
Entries 1e+08
Mean 0.0001135
Std Dev 1.021

• The 1D histogram of a Gaussian distribution
with 100M samples

Thanks Jim Pivarski to provide this great exercise!

• What happens after the second or the third fill?
The center part of the Gaussian starts to fatten out

h
Entries 2e+08
Mean 05-3.918e
Std Dev 1.021

5- 4- 3- 2- 1- 0 1 2 3 4 50

2

4

6

8

10

12

14

16

610´ h
Entries 2e+08
Mean 05-3.918e
Std Dev 1.021

Outlines

• Basics
• Real numbers
• Representation of real numbers
• Computer representation of real numbers

• IEEE Floating Point Representation
• Formats
• Roundings
• Exceptions

• Approximate Math
• Goals
• Basic understanding of computer representation of numbers
• Basic understanding of floating point arithmetic
• Consequences of floating point arithmetic for scientific computing
• Basic understanding about fast math

The Real Numbers
• The real numbers can be represented by a line

• Integers are the numbers, e.g., 0, 1, -1, 2, -2, …
• Rational numbers are those that consist of a ratio of two integers, e.g., 1/2, 2/3, 6/3;

some of these are integers
• Irrational numbers are the real numbers that are not rational, e.g., 2, 𝜋, e.

1
2

1
2

Decimal Numbers

• Nature notation:

• Disadvantages:
• Small number like 0.000000000082 has lot of zeros before anything

interesting shows up. Similarly for large numbers

• It’s hard to estimate the magnitude of a large number, e.g., 4221302112

3902.7349

Representation a Real Number in Scientific Notation

• In scientific notation, every real number can be represented by

𝑥 = (−1)! '
"#$

%

𝑑" 𝐵&" 𝐵'

where s ∈ 0, 1 , 𝐵 ≥ 2, 𝑖 ∈ 0, 1, 2, … , 𝑑" ∈ 0,… , 𝐵 − 1 and 𝑑$ > 0when 𝑥 ≠
0. B and e are integers.

Example
(71)!"= (7x100 + 1x10-1)x101

71 #=(1x20 + 0x2-1 + 0x2-2 + 0x2-3 + 1x2-4 + 1x2-5 + 1x2-6)x26

− !
!" !"

= −1 !(1x100)x10-1

− !
!" #

= (-1)1(0.0001100110011…)#= −1 ! (1x20 + 1x2-1 + 0x2-2 + 0x2-3 + 1x2-4 + …)x2$%

(2)10 = (1.414213…)10

(𝜋)10 = 3.141592… 10

Computer Representation of Numbers

• A computer has finite number of bits, thus can only represent a finite subset of the
real numbers

• They are called floating point numbers and can be represented as

𝑥 = (−1)! '
"#$

%&'

𝑑" 𝐵&" 𝐵(

where s ∈ 0, 1 , 𝐵 ≥ 2, 𝑑" ∈ 0, … , 𝐵 − 1 with 𝑑$ > 0 when 𝑥 ≠ 0. 𝑖 ∈ 0, … , 𝑝 − 1 , 𝑒 ∈
𝑒)"*, … , 𝑒)+,
• B is called the base
• ∑&'"

($!𝑑& 𝐵$& is called the significand (or mantissa)
• p is called the precision
• e is the exponent
• The representation is normalized when 𝑑" > 0 (scientific notation)

finite

Quiz: Binary Representation

• When B=2
𝑥 (= (−1)! 1. 𝑏)𝑏(…𝑏*&) 2'

• 𝑏" = 1 is a hidden bit (in a normalized binary system)
• 𝑏!𝑏#…𝑏($! is called the fractional part of the significand
• 𝑒 ∈ 𝑒)&*, … , 𝑒)+,
• The gap between 1 and the next larger floating point number is called machine epsilon,
𝜀

• Questions: In this binary system
• What is the largest number?

𝑥)+, #= (1 − 2$()2-!"#.!

• What is the smallest positive normalized number?
𝑥)&* # = 2-!$%

• What is the 𝜀 ?
𝜀# = 1.00. . 1 ×2" − 1.00. . 0 ×2" = (0.00…1)# ×2" =2$(($!)

A Toy Floating Point Number System

• For p=3, 𝑒)&* = −1, 𝑒)+,=2, the binary representation is
𝑥 # = (−1)1(1. 𝑏!𝑏#)2-

• Look at the positive numbers with e=0, 1, 2, -1

• The largest number is 7 and the smallest positive normalized number is ⁄! #

• The spacing between 1 and ⁄2 % is ⁄! % (epsilon = ⁄! %)

5
4

1 3
2
7
2

4 5 6 732 5
2

7
2

1
2
5
8
3
4
7
8

IEEE Floating Point Representation

• IEEE floating point numbers (in binary) can all be expressed in the form
𝑥 # = (−1)1(𝑏". 𝑏!𝑏#…𝑏($!)2-$-&$"'

where p is the precision. The exponent is stored biased as an unsigned integer.
• For example: IEEE single precision format (32 bits): 𝑥 # = −11(𝑏". 𝑏!𝑏#…𝑏#8)2-$!#9, 𝑒:&+1=28-1-1

Exponent Fraction Zero Fraction Non-zero Numerical value represented
00000000 ±0 Subnormal numbers (−1)()*+x2,-./x0.fraction

00000001,…,11111110 Normalized numbers Normalized numbers (−1)()*+x2012340+5,-.6x1.fraction

11111111 ±∞ NaN error pattern

Map of Float

https://ciechanow.ski/exposing-floating-point

Subnormal Numbers

• Subnormal numbers serve two purposes
• Provide a way to represent numeric value 0
• Provide gradual underflow where possible floating point numbers are spaced evenly between 0 and
𝑥7)+ (the smallest normalized floating point numbers)

• They represent numerical values
−11(0.fraction)2-!$%

• Example, in the toy floating point system: p=3, 𝑒)&*=-1, the non-negative subnormal
numbers are:

5
4

1 3
2
7
2

4 5 6 732 5
2

7
2

1
2
5
8
3
4
7
8

1
8
1
4
3
8

0

IEEE 754 Binary Formats

• IEEE provides five basic binary formats

https://en.wikipedia.org/wiki/Floating-point_arithmetic

• C++ numerical_limits class template provides a standardized way to query various
properties of floating point types

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Intrinsic Errors in Floating Point Arithmetic
Rounding, differences in addend exponents, cancellation, near overflow/underflow errors

Rounding
• A a positive REAL number in the normalized range (𝑥)&* ≤ 𝑥 ≤ 𝑥)+,) can be represented as

𝑥 # =(1. 𝑏!𝑏#…𝑏($!…)x2-,
where 𝑥)&*(=2-!$%) and 𝑥)+,(= (1 − 2$()2-!"#.!) are the smallest and largest normalized
floating point numbers. (Subscript 2 for binary representation is omitted since now.)
• The nearest floating point number less than or equal to x is

𝑥$ =(1. 𝑏!𝑏#…𝑏($!)x2-

• The nearest floating point number larger than x is
𝑥. =(1. 𝑏!𝑏#…𝑏($! + 0.00…1)x2-

• The gap between 𝑥. and 𝑥$, called unit in the last place (ulp) is
2$ ($! 2-

• The absolute rounding error is
𝑎𝑏𝑠𝑒𝑟𝑟 𝑥 = 𝑟𝑜𝑢𝑛𝑑 𝑥 − 𝑥 < 2$ ($! 2-=ulp

• The relative rounding error is

𝑟𝑒𝑙𝑒𝑟𝑟 𝑥 = |=>?*@ , $,|
|,|

< #8 98: #;

#;
= 2$ ($! =𝜀

Rounding Modes

• The IEEE standard defines five rounding modes
• The first two round to a nearest value; the others are called directed roundings

• Roundings to nearest
• Round to nearest, ties to even – rounds to the nearest value; if the number falls midway it is

rounded to the nearest value with an even (zero) least significant bit, which occurs 50% of the time;
this is the default algorithm for binary floating-point and the recommended default for decimal

• Round to nearest, ties away from zero – rounds to the nearest value; if the number falls midway it is
rounded to the nearest value above (for positive numbers) or below (for negative numbers)

• Directed roundings
• Round toward 0 – directed rounding towards zero (also known as truncation).
• Round toward +∞ – directed rounding towards positive infinity (also known as rounding up or

ceiling).
• Round toward −∞ – directed rounding towards negative infinity (also known as rounding down or

floor).

Quiz: A Toy Rounding Example

1,000,000,000999,999,936

01001110011011100110101100100111 01001110011011100110101100101000 01001110011011100110101100101001

x nextafter(x,+∞)nextafter(x,−∞)

ulp ulp

• Example:
float x=1000000000;
float y=1000000032;
float z=1000000033;

std::cout<<std::scientific<<std::setprecision(8)<< x << ‘ ‘<< y << ‘ ‘<<z<<std::endl;

• Question: What’s the output?

1,000,000,064
ulp

• Answers: 1.00000000e+09 1.00000000e+09 1.00000006e+09
• When rounding to the nearest, abserr(x) ≤ -

.
ulp and relerr(x) ≤ -

.
𝜀

Precision

• Floating point arithmetic CANNOT precisely represent true arithmetic operations
• The operands are rounded
• They exist in a finite number (~2<. for single precision)
• The space between two floating point numbers differs by one ulp

• Results of operations are rounded
• 𝑥 + 𝜀 − 𝑥 ≠ 𝜀

• Algebra is NOT necessarily associative and distributive
• 𝑎 + 𝑏 + 𝑐 ≠ 𝑎 + 𝑏 + 𝑐
• ⁄= > ≠ 𝑎 ∗ ⁄- >

• (a + b) * (a – b) ≠ 𝑎. - 𝑏.

• Example: what will be the result of 0.1#?
• In single precision, 0.1 is rounded and represented as 0.100000001490116119384765625 exactly
• Squaring it with single-precision floating point hardware (with rounding) gives

0.010000000707805156707763671875
• It is neither 0.01 nor the representable number closest to 0.01 (the representable number closest to 0.01 is

0.009999999776482582092285156250)

Quiz: Adding a Small and a Large Number

1,000,000,000999,999,936

01001110011011100110101100100111 01001110011011100110101100101000 01001110011011100110101100101001

x nextafter(x,+∞)nextafter(x,−∞)

ulp

ulp

ulp

• Example:
float x=1000000000;
std::cout<<std::scientific<<std::setprecision(8)

<< x << ‘ ‘<< x+32.f << ‘ ‘<<x+33.f<<std::endl
<< x+32.f-x << ‘ ‘ << x+33.f-x <<std::endl;

• Question: What is the output?

1,000,000,064

• Answers:

1.00000000e+09 1.00000000e+09 1.00000006e+09
0.00000000e+00 6.40000000e+01

Histogram Problem in Root

h
Entries 1e+08
Mean 0.0001135
Std Dev 1.021

5− 4− 3− 2− 1− 0 1 2 3 4 50

2

4

6

8

10

12

14

16

610× h
Entries 1e+08
Mean 0.0001135
Std Dev 1.021

h
Entries 2e+08
Mean 05− 3.918e
Std Dev 1.021

5− 4− 3− 2− 1− 0 1 2 3 4 50

2

4

6

8

10

12

14

16

610× h
Entries 2e+08
Mean 05− 3.918e
Std Dev 1.021

• After the second fill, the middle of the
Gaussian starts flattening out

• Since the result of an operation is
rounded, when adding a small and a
large number, the small number might be
dropped (ignored) if it is smaller than the
ulp of the large number

h
Entries 3e+08
Mean 05-4.61e
Std Dev 1.021

5- 4- 3- 2- 1- 0 1 2 3 4 50

2

4

6

8

10

12

14

16

610´ h
Entries 3e+08
Mean 05-4.61e
Std Dev 1.021

Hands-on

git clone https://github.com/beiwang2003/minicourse_fpa.git

https://github.com/beiwang2003/minicourse_fpa.git

Hands-on: Summing Many Numbers

• Questions: What are the potential arithmetic issues when summing many
numbers?
• Compile the code: g++ -std=c++11 -Wall -march=native nativeSum.cpp –o nativeSum
• Run the code: ./nativeSum

Inspired by the patriot missile failure problem: http://www-users.math.umn.edu/~arnold/disasters/patriot.html

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

Hands-on: Kahan Summation Algorithm

See: https://en.wikipedia.org/wiki/Kahan_summation_algorithm

• Compile the code: g++ -std=c++11 -Wall -march=native kahanSum.cpp –o kahanSum
• Run the code: ./kahanSum

Algorithm Considerations

• Numerical algorithms often needs to sum up a large number of
values
• e.g., matrix matrix multiplication

• The problem gets even more complicated on parallel computers
• A common technique to maximize floating point arithmetic

accuracy is to pre-sort the data. On parallel computer,
• Divide up the number in groups
• Sort the data in each group and sum them sequentially by one thread
• A reduction for the partial sum from each thread

Cancellation

• Cancellation occurs when we subtract two almost equal numbers
• The consequence is the error could be much larger than the machine epsilon
• For example, consider two numbers

𝑥 = 3.141592653589793 (16-digit approximation to 𝜋)
𝑦 = 3.141592653585682 (12-digit approximation to 𝜋)

Their difference is
𝑧 = 𝑥 − 𝑦 = 0.000000000004111=4.111x10&)(

In a C program, if we store x, y in single precision and display z in single
precision, the difference is

0.000000e+00
If we store x, y in double precision and display z in double precision, the

difference is
4.110933815582030e-12

Complete loss of accuracy

Partial loss of accuracy

Cancellation: The Solution of Quadratic Equation
• Consider the quadratic equation 𝑎𝑥# + 𝑏𝑥 + 𝑐 = 0, the roots are

𝑥 =
−𝑏 ± 𝑏# − 4𝑎𝑐

2𝑎
• A better solution will be

𝑥! = $: $1&A*(:) :?$%+B
#+

𝑥# = #B
$: $1&A*(:) :?$%+B

= B
+,:

• When a=1, b= 1.786737589984535 and c=1.149782767465722x10-8, in double precision,
the first formula yields

𝑥! = K(!.9DE989E"!%D#8E8.!.9DE98929D%DE9"9)
#= 1.786737589984535

𝑥# = K(!.9DE989E"!%D#8E8$!.9DE98929D%DE9"9)
#= 0.000000011497828

• The second formula yields
𝑥! = K(!.9DE989E"!%D#8E8.!.9DE98929D%DE9"9)

#= 1.786737589984535
𝑥# = K#."2%8E""F"F%9%28×!"8@

1.786737589984535 = 1.149782767465722×10$D

Two sources of cancellation

Cancellation

Exceptions

• The IEEE floating point standard defines several exceptions that occur when the result of a
floating point operation is unclear or undesirable. Exceptions can be ignored, in which case some
default action is taken, such as returning a special value. When trapping is enabled for an
exception, an error is signaled whenever that exception occurs. Possible floating point exceptions:
• Underflow: The result of an operation is too small to be represented as a normalized float in its format. If

trapping is enabled, the floating-point-underflow condition is signaled. Otherwise, the operation results in a
denormalized float or zero.

• Overflow: The result of an operation is too large to be represented as a float in its format. If trapping is
enabled, the floating-point-overflow exception is signaled. Otherwise, the operation results in the appropriate
infinity.

• Divide-by-zero: A float is divided by zero. If trapping is enabled, the divide-by-zero condition is signaled.
Otherwise, the appropriate infinity is returned.

• Invalid: The result of an operation is ill-defined, such as (0.0/0.0). If trapping is enabled, the floating-point-
invalid condition is signaled. Otherwise, a quiet NaN is returned.

• Inexact: The result of a floating point operation is not exact, i.e. the result was rounded. If trapping is enabled,
the floating-point-inexact condition is signaled. Otherwise, the rounded result is returned.

• Trapping of these exceptions can be enabled through compiler flags, but be aware that the
resulting code will run slower.

Strict IEEE 754 vs Fast Math

• Compilers can treat FP math either in “strict IEEE754 mode” or “fast math” using algebra rules
for real numbers

• Compiler options allow you to control tradeoffs among accuracy, reproducibility and speed
• GCC Compilers
• gcc default is “strict IEEE 754 mode”
• -O2 –funsafe-math-optimization: allow arbitrary reassocations and transformations
• -O2 –ffast-math: -funsafe-math-optimization + no exceptions and special quantities handling enforcement
• -Ofast: -O3 (turn on vectorization) + -ffast-math + others
• See: https://gcc.gnu.org/wiki/FloatingPointMath

• Intel Compilers
• icc uses compiler switch –fp-model to choose the floating-point semantics

• See: https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

Speeding Math Up
• Typical cost of operations in modern CPU

• Avoid or factorize-out division and sqrt
• If possible, compile with “–Ofast” or “-ffast-math”
• If possible, use hardware-supported reciprocal square root

• Prefer linear algebra to trigonometric functions
• Choose precision to match required accuracy
• Square and square-root decrease precision
• Catastrophic precision-loss in the subtraction of almost-equal large numbers

https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf
https://stackoverflow.com/questions/39095993/does-each-floating-point-operation-take-the-same-time

operations instruction SSE single SSE double AVX single AVX double (FMA)
+, - ADD, SUB 3 3 3 3 4
* MUL 5 5 5 5 4
/,sqrt DIV, SQRT 10-14 10-22 21-29 21-45
1.f/, 1.f/sqrt RCP, RSQRT 5 7

https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf

Fused Multiply Add (FMA)

• fma(a,b,c) = round(a*b+c)
• Opposed to round(round(a*b)+c)

• Single instruction with 4 or 5 cycle latency
• Opposed to 2 instructions with 5+3 cycle latency

• More precise with one rounding
• Opposed to two, but the results will be different

• Introduce a “contraction” issue
• sqrt(a*a – b*b) may be contracted using FMA like fma(a, a, - b*b). If a==b, the result can be nonzero

• Compiler support
• Intel Compiler: -fp-model = strict (default is ”fast”)
• GCC (and Clang) flags: -ffp-contract=off (default is “fast”)
• https://stackoverflow.com/questions/34436233/fused-multiply-add-and-default-rounding-modes

Lessons Learned

• Representing real numbers in a computer always involves an
approximation and a potential loss of significant digits.

• Testing for the equality of two real numbers is not a realistic way to think
when dealing with the numbers in a computer. It is more realistic to test the
difference of two numbers with respect to machine epsilon.

• Performing arithmetic on very small or very large numbers can lead to
errors that are not possible in abstract mathematics. We can get underflow
and overflow, and the order in which we do arithmetic can be important.
This is something to be aware of when writing low-level software to to do
computations.

• The more bits we use to represent a number, the greater the precision of the
representation and the more memory we consume.

https://www.stat.berkeley.edu/~nolan/stat133/Spr04/chapters/representations.pdf

https://www.stat.berkeley.edu/~nolan/stat133/Spr04/chapters/representations.pdf

References

• What Every Computer Scientist Should Know About Floating-Point Arithmetic. Goldberg.
https://docs.oracle.com/cd/E19957-01/806- 3568/ncg_goldberg.html

• Numerical Computing with IEEE Floating Point Arithmetic. Overton, SIAM 2001
• Chapter 6, numerical considerations, Programming Massively Parallel Processors, A hand-

on approach, 3rd edition, David B. Kirk and Wen-wei W. Hwu
• ESC18, “Optimal Floating Point Computation”, Vincenzo Innocente,

https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/
Vincenzo_OptimalFloatingPoint2018.pdf

• CoDas-HEP 2018, “Floating Point is Not Real”, Matthieu Lefebvre,
https://indico.cern.ch/event/707498/contributions/2916937/attachments/1691892/27
24587/codas_fpa.pdf

• https://stackoverflow.com/questions/39095993/does-each-floating-point-operation-
take-the-same-time

• Accumulation of Round-Off Error in Fast Fourier Transforms, T. Kaneko and B. Liu, Jr. of
ACM, Vol. 17, No. 4, October 1970, pp. 637-654.

https://docs.oracle.com/cd/E19957-01/806-%203568/ncg_goldberg.html
https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf
https://indico.cern.ch/event/707498/contributions/2916937/attachments/1691892/2724587/codas_fpa.pdf
https://stackoverflow.com/questions/39095993/does-each-floating-point-operation-take-the-same-time

BACK UP

Floating Point Numbers

• Again, let us consider the floating point representation (assume x≠ 0)

𝑥 = −11 M
&'"

($!

𝑑& 𝐵$& 𝐵-

where s ∈ 0, 1 , 𝐵 ≥ 2, 𝑑& ∈ 0,… , 𝐵 − 1 with 𝑑" > 0, 𝑖 ∈ 0,… , 𝑝 − 1 , 𝑒 ∈ 𝑒)&*, … , 𝑒)+, .
• What is the largest number in the system?

𝑥7=1 = ∑)AB
2,-(𝐵 − 1) 𝐵,) 𝐵0!"# = (1 − 𝐵,2)𝐵0!"#C-, (𝑥7=1).= (1 − 2,2)20!"#C-

• What is the smallest positive normalized in the system
𝑥7)+ = 𝐵0!$% , (𝑥7)+).= 20!$%

• The gap between number 1.0 and the next larger floating point number is called machine epsilon.
What is the machine epsilon in the system?

𝜀=𝐵,(2,-), 𝜀. = (1.00. . 1). − 1.00. . 0 . = (0.00…1).=2,(2,-)

• The gap between 𝐵F and the next larger floating point number is called unit in the last place (ulp).
What is the upl in the system?
𝑢𝑙𝑝 𝑥 = 𝐵,(2,-)𝐵0 = 𝜀 𝐵0 , 𝑢𝑙𝑝(𝑥). = (1.00…1).20 − 1.00…0 .20 = (0.00…1).20= 2,(2,-)20

Correctly Rounded Arithmetic
• The IEEE standard requires that the result of addition, subtraction, multiplication and

division be exactly rounded.
• Exactly rounded means the results are calculated exactly and then rounded. For example: assuming

p =23, 𝑥=(1.00..00)2x20 and 𝑧=(1.00..01)2x2-25, then x-z is

• Compute the result exactly is very expensive if the operands differ greatly in size
• The result of two or more arithmetic operations are NOT exactly rounded

• How is correctly rounded arithmetic implemented?
• Using two additional guard bits plus one sticky bit guarantees that the result will be the same as

computed using exactly rounded [Goldberg 1990]. The above example can be done as

Correctly Rounded Arithmetic
• The IEEE standard requires that the result of addition, subtraction, multiplication and

division be exactly rounded.
• Exactly rounded means the results are calculated exactly and then rounded. For example: assuming

p =23, 𝑥=(1.00..00)2x20 and 𝑧=(1.00..01)2x2-25, then x-z is

• Compute the result exactly is very expensive if the operands differ greatly in size
• The result of two or more arithmetic operations are NOT exactly rounded

• How is correctly rounded arithmetic implemented?
• Using two additional guard bits plus one sticky bit guarantees that the result will be the same as

computed using exactly rounded [Goldberg 1990]. The above example can be done as

Cancellation

• Cancellation occurs when we operate numbers that are not in floating point format
• For every 𝑥 𝜖 ℝ, there exists 𝜀 < 𝜀)+BH such that

𝑟𝑜𝑢𝑛𝑑 𝑥 = 𝑥 1 + 𝜀 .
• Thus

𝑟𝑜𝑢𝑛𝑑 𝑟𝑜𝑢𝑛𝑑 𝑥 − 𝑟𝑜𝑢𝑛𝑑 𝑦 = 𝑟𝑜𝑢𝑛𝑑 𝑥 − 𝑟𝑜𝑢𝑛𝑑 𝑦 1 + 𝜀8
= (𝑥(1 + 𝜀!)−𝑦(1 + 𝜀#)) 1 + 𝜀8
= (𝑥 − 𝑦)(1 + 𝜀8) + (𝑥𝜀!-y𝜀#)(1 + 𝜀8),

and if 𝑥 − 𝑦 ≠ 0,

|(=>?*@(=>?*@ , $=>?*@ I)
,$I

|=|𝜀8 + , J:$IJ?
,$I

(1+𝜀8)|

when 𝑥 𝜀! − 𝑦𝜀# ≠ 0, and x-y is small, the error could be ≫ 𝜀)+BH

