FLOATING POINT ARITHMETIC IS NOT REAL

Bei Wang
Princeton University

Fourth Computational and Data Science school for HEP (CoDaS-HEP)

Aug 2, 2022

\') PRINCETON UNIVERSITY

[beiwang@Padroit4 ~1$ root

* The 1D histogram of a Gaussian distribution

| Welcome to ROOT 6.19/01 https://root.cern |
| (c) 1995-2019, The ROOT Team | with 100M Samples
| Built for linuxx8664gcc on May 29 2019, 18:03:14 |
| From heads/master@vé6-19-01-3-g408e52b |
| Try '.help', '.demo', '.license', '.credits',6 '.quit'/'.q' | 10 __h
C Entries 2e+08
16— Mean 3.918e-05
C Std Dev 1.021
root [0] auto h = new TH1F("h", "", 20, -5, 5); 14—
root [1] h->Draw(); -
Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name cl 12—
root [2] h->FillRandom("gaus", 100000000); u
root [3] h->Draw(); 10
root [4] h->FillRandom("gaus", 100000000); sl
root [5] h->Draw(); o
root [6] h->FillRandom("gaus", 100000000); 6l
root [7] h->Draw(); o
root [8] h->FillRandom("gaus", 100000000); 4
root [9] h->Draw(); of
root [10] h->FillRandom("gaus", 100000000); C
root [11] h->Draw(); o) S VRN I N A A AR A L
5 4 -3 -2 0 1 2 3 4 5

root [12] h->FillRandom("gaus", 100000000);
root [13] h->Draw();
root [14] h->FillRandom("gaus", 100000000);

* What happens after the second or the third fill?
The center part of the Gaussian starts to fatten out

Thanks Jim Pivarski to provide this great exercise!

%W PRINCETON UNIVERSITY

* Basics
* Real numbers
* Representation of real numbers

« Computer representation of real numbers

 IEEE Floating Point Representation
* Formats
* Roundings
* Exceptions

» Approximate Math
* Goals

* Basic understanding of computer representation of numbers
* Basic understanding of floating point arithmetic

 Consequences of floating point arithmetic for scientific computing
* Basic understanding about fast math

\'? PRINCETON UNIVERSITY

BASICS

\'” PRINCETON UNIVERSITY

* The real numbers can be represented by a line

1 1
2 2

7
3
=)

* Integers are the numbers, e.g., 0,1, -1,2,-2, ...

* Rational numbers are those that consist of a ratio of two integers, e.g., 1/2,2/3,6/3;
some of these are integers

* Irrational numbers are the real numbers that are not rational, e.g., V2,1, e.

\'? PRINCETON UNIVERSITY

 Nature notation:
3902.7349

* Disadvantages:

« Small number like 0.000000000082 has lot of zeros before anything
interesting shows up. Similarly for large numbers

* It's hard to estimate the magnitude of a large number, e.g., 4221302112

\') PRINCETON UNIVERSITY

* In scientific notation, every real number can be represented by

X = (—1)S<§: d; B—i> B¢
=0

wheres € {0,1},B > 2,i € {0,1,2,...},d; € {0, ...,B—1}and dy; > 0 when x #
0.B and e are integers.
Example
(71)10= (7x10° + 1x10-1)x10"
(71),=(1x20+ 0x2°1 + 0x22 + 0x23 + 1x24 + 1x2-° + 1x26)x26

- (1)10= (—1)1(1x109x10"

10

~(55). = (1)1(0.0001100110011 ...);= (—1)! (1x20 + 1x21 + 0x22 + 0x23 + 1x24 + ..)x2™*
2

\'/) PRINCETON UNIVERSITY

« A computer has finite number of bits, thus can only represent a finite subset of the
real numbers

« They are called floating point numbers and can be represented as

. i finite
X = (—1)Si % dl-B“>B@
=0

wheres € {0,1},B > 2,d; € {0, ...,B — 1} withdy; > 0when x # 0.i € {0,...,p — 1},e €

{emin: ey emax}

e Bis called the base

« Y~ d; B! is called the significand (or mantissa)

* pis called the precision

* e is the exponent

* The representation is normalized when dy > 0 (scientific notation)

\'/') PRINCETON UNIVERSITY

* When B=2
(%), = (—=1)5(1.b1by...b,_4)2°

bo = 11is a hidden bit (in a normalized binary system)

bib;...b,_, is called the fractional part of the significand

e € {eminr) emax}
The gap between 1 and the next larger floating point number is called machine epsilon,
€

* Questions: In this binary system
* What is the largest number?
(xmax)z= (1 o 2_p)28max+1
» What is the smallest positive normalized number?
(Xmin)z = 26min
* Whatis thee?
&, = (1.00..1)x2° —(1.00..0)x2° = (0.00 ... 1), x2°=2"(F-1)

\') PRINCETON UNIVERSITY

* For p=3, epin = —1, epax=2, the binary representation is

()2 = (=D*(1. by by)2°
* Look at the positive numbers with e=0, 1, 2, -1

w
N ~N——
NN
Ul
(@)
~

* The largest number is 7 and the smallest positive normalized number is 1/,
* The spacing between 1 and °/, is 1/, (epsilon = 1/,)

\'/) PRINCETON UNIVERSITY

IEEE FLOATING POINT REPRESENTATION
(IEEE 754 Standard)

» IEEE floating point numbers (in binary) can all be expressed in the form
(x)2 = (—=1)°(bo. b1b,...b,_,)2¢ bias
where p is the precision. The exponent is stored biased as an unsigned integer.
* For example: IEEE single precision format (32 bits): (x), = —15(bg. b1 b;...b,3)2¢71%7, e};,s=281-1

sign exponent (8 bits) fraction (23 bits)
(I.)I? 1f1f1[1[1]o ?i?|1 0|o[o[o[o[o[o[o[o[o[o[o[o[o[o[o[o]o]o ol?ll =0.15625
3130 2322 (bit index) 0
Exponent Fraction Zero Fraction Non-zero Numerical value represented
00000000 +0 Subnormal numbers (—1)519mx2126x(fraction
00000001, ...,11111110 Normalized numbers Normalized numbers | (—1)5i9nx2exponent=127y1 fraction
11111111 +oo NaN error pattern

\'/') PRINCETON UNIVERSITY

significand

0 > 25—
0 o EESESTCTSEOTS R e RS S OIS 0 S 8 e)
. © & & o o o o 4) e & & & & o o o

juauodxa paselq

B zero @ subnormals @ maximum

minimum infinity @ NaNs

https:/ /ciechanow.ski/exposing-floating-point

%W PRINCETON UNIVERSITY

* Subnormal numbers serve two purposes

* Provide a way to represent numeric value 0
* Provide gradual underflow where possible floating point numbers are spaced evenly between 0 and
Xmin (the smallest normalized floating point numbers)

* They represent numerical values
—15(0.fraction)2¢min

« Example, in the toy floating point system: p=3, e,,;,=-1, the non-negative subnormal

numbers are:

\') PRINCETON UNIVERSITY

 IEEE provides five basic binary formats

Type Sign | Exponent | Significand field A Total bits | Exponent bias | Bits precision | Number of decimal digits

Half (IEEE 754-2008) 1 5 10 16 15 1 ~3.3
Single 1 8 23 32 127 24 ~7.2

Double 1 1 52 64 1023 53 ~15.9

x86 extended precision 1 15 64 80 16383 64 ~19.2
Quad 1 15 112 128 16383 113 ~34.0

https:/ /en.wikipedia.org/wiki/Floating-point arithmetic

» C++ numerical_limits class template provides a standardized way to query various
properties of floating point types

\') PRINCETON UNIVERSITY

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Intrinsic Errors in Floating Point Arithmetic

Rounding, differences in addend exponents, cancellation, near overflow/underflow errors

\'W PRINCETON UNIVERSITY

* A apositive REAL number in the normalized range (Xpy,in < X < Xmqy) can be represented as
(x)z =(1 ble .. -bp—l .. .)XZe,

where X, (526min) and X0, (= (1 — 27P)28max*1) are the smallest and largest normalized
floating point numbers. (Subscript 2 for binary representation is omitted since now.)

 The nearest floating point number less than or equal to x is
x_=(1.b1b;...by_1)x2°
The nearest floating point number larger than x is
x4 =(1.byby...b,_; +0.00 ... 1)x2°

The gap between x,. and x_, called unit in the last place (ulp) is
2-(p-1)7e

The absolute rounding error is
abserr(x) = |round(x) — x| < 2_(”_1)23=ulp
The relative rounding error is

d(x)— 2-(P—1)ze
|round (x)—x| < _

2—(19_1) =c
|x| 2¢€

relerr(x) =

\'/') PRINCETON UNIVERSITY

* The IEEE standard defines five rounding modes
* The first two round to a nearest value; the others are called directed roundings

* Roundings to nearest

* Round to nearest, ties to even - rounds to the nearest value; if the number falls midway it is
rounded to the nearest value with an even (zero) least significant bit, which occurs 50% of the time;
this is the default algorithm for binary floating-point and the recommended default for decimal

* Round to nearest, ties away from zero - rounds to the nearest value; if the number falls midway it is
rounded to the nearest value above (for positive numbers) or below (for negative numbers)

 Directed roundings
* Round toward 0 - directed rounding towards zero (also known as truncation).
* Round toward +o - directed rounding towards positive infinity (also known as rounding up or
ceiling).
* Round toward —o - directed rounding towards negative infinity (also known as rounding down or
floor).

\'/') PRINCETON UNIVERSITY

nextafter(x,—0) X nextafter(x,+o0)
N ulp
999,999,936 1,000,000,000 1,000,000,064
\47 ulp > |< ulp >
>
01001110011011100110101100100111 01001110011011100110101100101000 01001110011011100110101100101001

* Example:

float x=1000000000;
float y=1000000032;
float z=1000000033;

std::cout<<std::scientific<<std::setprecision(8)<< x <<’ <<y <<’ ‘<<z<<std::endl;

* Question: What's the output?

* Answers: 1.00000000e+09 1.00000000e+09 1.00000006e+09
* When rounding to the nearest, abserr(x) < %ulp and relerr(x) < ;—e

\') PRINCETON UNIVERSITY

 Floating point arithmetic CANNOT precisely represent true arithmetic operations
* The operands are rounded

* They exist in a finite number (~232 for single precision)
* The space between two floating point numbers differs by one ulp
* Results of operations are rounded
X+ & —x#FE€
* Algebra is NOT necessarily associative and distributive
c(a+b)+c #a+(b+c)
LYyt a s Y,
* (@a+b)*(a-b)# a®-b?
* Example: what will be the result of 0.12?
* In single precision, 0.1 is rounded and represented as 0.100000001490116119384765625 exactly

* Squaring it with single-precision floating point hardware (with rounding) gives
0.010000000707805156707763671875

* It is neither 0.01 nor the representable number closest to 0.01 (the representable number closest to 0.01 is
0.009999999776482582092285156250)

\'/) PRINCETON UNIVERSITY

nextafter(x,—0) X nextafter(x,+o0)
N ulp
999,999,936 1,000,000,000 1,000,000,064
\47 ulp > |< ulp >
>
01001110011011100110101100100111 01001110011011100110101100101000 01001110011011100110101100101001

« Example:
float x=1000000000;
std::cout<<std::scientific<<std::setprecision(8)
<< x << x+32.f << <<x+33.f<<std::endl
<< x+32.f-x <<’ << x+33.f-x <<std::endl;

* | Question: [What is the output?

* | Answers:

1.00000000e+09 1.00000000e+09 1.00000006e+09
0.00000000e+00 6.40000000e+01

\'/) PRINCETON UNIVERSITY

[beiwang@Padroit4 ~1$ root

| Welcome to ROOT 6.19/01 https://root.cern |
| (c) 1995-2019, The ROOT Team |
| Built for linuxx8664gcc on May 29 2019, 18:03:14 |
| From heads/master@v6-19-01-3-g408e52b |
| Try '.help', '.demo', '.license', '.credits', '.quit'/'.q' |

root [@] auto h = new TH1F("h", "", 20, -5, 5);
root [1] h->Draw();

Info in <TCanvas::MakeDefCanvas>: created default TCanvas with name c1

root [2] h->FillRandom("gaus", 100000000);
root [3] h->Draw();

root [4] h->FillRandom("gaus", 100000000);
root [5] h->Draw();

root [6] h->FillRandom("gaus", 100000000);
root [7] h->Draw();

root [8] h->FillRandom("gaus", 100000000);
root [9] h->Draw();

root [10] h->FillRandom("gaus", 100000000);
root [11] h->Draw();

root [12] h->FillRandom("gaus", 100000000);
root [13] h->Draw();

root [14] h->FillRandom("gaus", 100000000);
root [15] h->Draw();

root [16] pow 2, 24

(double) 16777216.

\') PRINCETON UNIVERSITY

x10° h
- Entries 3e+08
16— Mean 4.61e-05
C Std Dev 1.021
14
12
10—
81—
6
4=
2
L. | T | |
cl5 -1 0 1 5

After the second fill, the middle of the
Gaussian starts flattening out

Since the result of an operation is
rounded, when adding a small and a
large number, the small number might be
dropped (ignored) if it is smaller than the
ulp of the large number

git clone https:/ /github.com /beiwang2003 /minicourse_fpa.git

\'W PRINCETON UNIVERSITY

https://github.com/beiwang2003/minicourse_fpa.git

* |Questions:
numbers?

What are the potential arithmetic issues when summing many

» Compile the code: g++ -std=c++11 -Wall -march=native nativeSum.cpp -o nativeSum

* Run the code: ./nativeSum

#include<cstdio>
#include<cstdlib>

int main() {
float tenth=0.1f;
float count = float(60%60%100%10);
printf("%f %f %a\n",count,countxtenth,count*tenth);
float sum=0;
long long n=0;
while(n<1000000) {
sum+=0.1f;
++n;
if (n<21 || n%36000==0) printf("step=%d expected=%f

return 0;

solution=%f diff=%f\n",n, 0.1f%n, sum,

std::abs(@.1fxn-sum));

step=36000 expected=3600.000000 solution=3601.162354 diff=1.162354
step=72000 expected=7200.000000 solution=7204.677734 diff=4.677734

step=108000
step=144000
step=180000
step=216000
step=252000
step=288000
step=324000
step=360000
step=396000
step=432000
step=468000
step=50400

expected=10800.000000
expected=14400.000000
expected=18000.000000
expected=21600.000000
expected=25200.000000
expected=28800.000000
expected=32400.000000
expected=36000.000000
expected=39600.000000
expected=43200.000000
expected=46800.000000

step=540000
step=576000
step=612000
step=648000

t 2400

expected=50400.000000
expected=54000.000000
expected=57600.000000
expected=61200.000000
expected=64800.000000

step
step=720000
step=756000
step=792000
step=828000
step=864000
step=900000
step=936000
step=972000

expected=68400.000000
expected=72000.000000
expected=75600.000000
expected=79200.000000
expected=82800.000000
expected=86400.000000
expected=90000.000000
expected=93600.000000
expected=97200.000000

Inspired by the patriot missile failure problem: http:/ /www-users.math.umn.edu/~arnold /disasters/ patriot.html

%W PRINCETON UNIVERSITY

solution=10795.431641
solution=14381.369141
solution=17967.306641
solution=21553.244141
solution=25139.181641
solution=28725.119141
solution=32311.056641
solution=35958.347656
solution=39614.597656
solution=43270.847656
solution=46927.097656
solution=50583.347656
solution=54239.597656
solution=57895.847656
solution=61552.097656
solution=65208.347656
solution=68864.593750
solution=72520.843750
solution=76177.093750
solution=79833.343750
solution=83489.593750
solution=87145.843750
solution=90802.093750
solution=94458.343750
solution=98114.593750

diff=4.568359
diff=18.630859
diff=32.693359
diff=46.755859
diff=60.818359
diff=74.880859
diff=88.943359
diff=41.652344
diff=14.597656
diff=70.847656
diff=127.097656
diff=183.347656
diff=239.597656
diff=295.847656
diff=352.097656
diff=408.347656
diff=464.593750
diff=520.843750
diff=577.093750
diff=633.343750
diff=689.593750
diff=745.843750
diff=802.093750
diff=858.343750
diff=914.593750

http://www-users.math.umn.edu/~arnold/disasters/patriot.html

function KahanSum(input)

variables sum,c,y,t,i // Local to the routine.

sum = 0.0 // Prepare the accumulator.

c=10.0 // A running compensation for lost low-order bits.

for i = 1 to input.length do // The array input has elements indexed input[1l] to input[input.length].
y = input[i] - ¢ // ¢ is zero the first time around.
t =sum +y // Alas, sum is big, y small, so low-order digits of y are lost.
c = (t - sum) -y // (t - sum) cancels the high-order part of y; subtracting y recovers negative (low part of y)
sum = t // Algebraically, c should always be zero. Beware overly-aggressive optimizing compilers!

next i // Next time around, the lost low part will be added to y in a fresh attempt.

return sum

See: https:/ /en.wikipedia.org/wiki/Kahan_summation_algorithm

» Compile the code: g++ -std=c++11 -Wall -march=native kahanSum.cpp -o kahanSum
* Run the code: ./kahanSum

step=36000 expected=3600.000000 solution=3600.000000 diff=0.000000

#include<cstdio> step=72000 expected=7200.000000 solution=7200.000000 diff=0.000000
#include<cstdlib> step=108000 expected=10800.000000 solution=10800.000000 diff=0.000000
cstdlib step=144000 expected=14400.000000 solution=14400.000000 diff=0.000000
. . step=180000 expected=18000.000000 solution=18000.000000 diff=0.000000
int main() { step=216000 expected=21600.000000 solution=21600.000000 diff=0.000000
float tenth=0.1f; step=252000 expected=25200.000000 solution=25200.000000 diff=0.000000

— . step=288000 expected=28800.000000 solution=28800.000000 diff=0.000000
float count = float(60%60%100%10) ; step=324000 expected=32400.000000 solution=32400.000000 diff=0.000000
printf("%f %f %a\n",count,countktenth,count*tenth); step=360000 expected=36000.000000 solution=36000.000000 diff=0.000000
float sum=0; step=396000 expected=39600.000000 solution=39600.000000 diff=0.000000
long long n=0; step=432000 expected=43200.000000 solution=43200.000000 diff=0.000000

4 step=468000 expected=46800.000000 solution=46800.000000 diff=0.000000

float c=0; step=504000 expected=50400.000000 solution=50400.000000 diff=0.000000
while (n < 1000000) { step=540000 expected=54000.000000 solution=54000.000000 diff=0.000000
float v = 0.1f - c; step=576000 expected=57600.000000 solutl:.on=57608.060006 d;ff:o.eaaaaa
_ . step=612000 expected=61200.000000 solution=61260.000000 diff=0.000000

float x = sum + y; step=648000 expected=64800.000000 solution=64800.000000 diff=0.000000

c = (x - sum) - vy; step=684000 expected=68400.000000 solution=68400.000000 diff=0.000000
sum = X; step=720000 expected=72000.000000 solution=72000.000000 diff=0.000000

++n: step=756000 expected=75600.000000 solution=75600.000000 diff=0.000000

. ' . . . step=792000 expected=79200.000000 solution=79200.000000 diff=0.000000

if (n<21 || n%36000==0) printf("step=%d expected=%f solution=%f diff=%f\n",n, 0.1f%n, sum, std::abs(@.1fxn-sum)); step-828000 expected=82800.000000 solution=82800.000000 diff=0.000000
} step=864000 expected=86400.000000 solution=86400.000000 diff=0.000000
return @; step=900000 expected=90000.000000 solution=90000.000000 diff=0.000000
step=936000 expected=93600.000000 solution=93600.000000 diff=0.000000
} step=972000 expected=97200.000000 solution=97200.000000 diff=0.000000

& PRINCETON UNIVERSITY

* Numerical algorithms often needs to sum up a large number of
values

* e.g., matrix matrix multiplication

The problem gets even more complicated on parallel computers

A common technique to maximize floating point arithmetic
accuracy is to pre-sort the data. On parallel computer,
* Divide up the number in groups

* Sort the data in each group and sum them sequentially by one thread
* A reduction for the partial sum from each thread

%W PRINCETON UNIVERSITY

* Cancellation occurs when we subtract two almost equal numbers
* The consequence is the error could be much larger than the machine epsilon
* For example, consider two numbers
x = 3.141592653589793 (16-digit approximation to m)
y = 3.141592653585682 (12-digit approximation to m)
Their difference is
z=x—y=0.000000000004111=4.111x10"12

In a C program, if we store x, y in single precision and display z in single
precision, the difference is

0.000000e+00 Complete loss of accuracy

If we store x, y in double precision and display z in double precision, the
difference is

4.110933815582030e-12 |Partial loss of accuracy

\'/') PRINCETON UNIVERSITY

* Consider the quadratic equation ax? + bx + ¢ = 0, the roots are

_ —b £ Vb? —4ac

X = Two sources of cancellation

2a

e A better solution will be

—b —sign(b) Vb2 —4ac
2a

o = 2¢ _c
2 _p —sign(b) Vb2 —4ac axq

* When a=1, b= 1.786737589984535 and ¢=1.149782767465722x10"% in double precision,
the first formula yields

X, = (1.7867376014—82363+1.786737578486707)/2 = 1.786737589984535

x, = (1786737601482363-1786737578486707) | _) 0)0000011497828
* The second formula yields — Cancellation

X, = (1.786737601482363+1.786737578486707)/2 = 1.786737589984535
—2.054360090947453x1078 — -8

X1

%W PRINCETON UNIVERSITY

 The IEEE floating point standard defines several exceptions that occur when the result of a
floating point operation is unclear or undesirable. Exceptions can be ignored, in which case some
default action is taken, such as returning a special value. When trapping is enabled for an
exception, an error is signaled whenever that exception occurs. Possible floating point exceptions:

* Underflow: The result of an operation is too small to be represented as a normalized float in its format. If
trapping is enabled, the floating-point-underflow condition is signaled. Otherwise, the operation results in a
denormalized float or zero.

* Overflow: The result of an operation is too large to be represented as a float in its format. If trapping is
enabled, the floating-point-overflow exception is signaled. Otherwise, the operation results in the appropriate
infinity.

* Divide-by-zero: A float is divided by zero. If trapping is enabled, the divide-by-zero condition is signaled.
Otherwise, the appropriate infinity is returned.

* Invalid: The result of an operation is ill-defined, such as (0.0/0.0). If trapping is enabled, the floating-point-
invalid condition is signaled. Otherwise, a quiet NaN is returned.

* Inexact: The result of a floating point operation is not exact, i.e. the result was rounded. If trapping is enabled,
the floating-point-inexact condition is signaled. Otherwise, the rounded result is returned.

+ Trapping of these exceptions can be enabled through compiler flags, but be aware that the
resulting code will run slower.

%W PRINCETON UNIVERSITY

Approximate Math

\'W PRINCETON UNIVERSITY

« Compilers can treat FP math either in “strict IEEE754 mode” or “fast math” using algebra rules
for real numbers

» Compiler options allow you to control tradeoffs among accuracy, reproducibility and speed
* GCC Compilers
* gcc default is “strict IEEE 754 mode”
* -O2 —funsafe-math-optimization: allow arbitrary reassocations and transformations
* -O2 —ffast-math: -funsafe-math-optimization + no exceptions and special quantities handling enforcement
* -Ofast: -O3 (turn on vectorization) + -ffast-math + others
* See: https:/ /gcc.gnu.org/wiki/FloatingPointMath
* Intel Compilers
* icc uses compiler switch —fp-model to choose the floating-point semantics

e Dprecise allows value-safe optimizations only e consistent best reproducibility from one processor type or
double used for e fast[=1] allows value-unsafe optimizations

(default) compiler chooses precision for expression evaluation
Floating-point exception semantics not enforced
Access to the FPU environment not allowed
Floating-point contractions are allowed
o fast=2 some additional approximations allowed

extended floating-point expression evaluation
e except enables strict floating-point exception semantics
e strict enables access to the FPU environment
disables floating-point contractions
such as fused multiply-add (fma) instructions
implies “precise” and “except”
* See: https:/ /software.intel.com/en-us/articles / consistency-of-floating-point-results-using-the-intel-compiler

\'/') PRINCETON UNIVERSITY

https://software.intel.com/en-us/articles/consistency-of-floating-point-results-using-the-intel-compiler

 Typical cost of operations in modern CPU

+ - ADD, SUB 3 3 3 3

* MUL 5 5 5 5
/,sqrt DIV, SQRT 10-14 10-22 21-29 21-45
1.£/,1.f/sqrt RCP, RSQRT 5 7

* Avoid or factorize-out division and sqrt
* If possible, compile with “-Ofast” or “-ffast-math”
» If possible, use hardware-supported reciprocal square root
* Prefer linear algebra to trigonometric functions
* Choose precision to match required accuracy
* Square and square-root decrease precision
» Catastrophic precision-loss in the subtraction of almost-equal large numbers

https:/ /agenda.infn.it/event/16941 / contributions /34831 / attachments /24523 / 27966 / Vincenzo OptimalFloatingPoint2018.pdf
https: / /stackoverflow.com/questions /39095993 / does-each-floating-point-operation-take-the-same-time

%W PRINCETON UNIVERSITY

https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf

* fma(a,b,c) = round(a*b+c)
* Opposed to round(round(a*b)+c)
* Single instruction with 4 or 5 cycle latency
* Opposed to 2 instructions with 5+3 cycle latency
* More precise with one rounding
* Opposed to two, but the results will be different
 Introduce a “contraction” issue
* sqrt(a*a - b*b) may be contracted using FMA like fma(a, a, - b*b). If a==b, the result can be nonzero
» Compiler support
* Intel Compiler: -fp-model = strict (default is “fast”)
« GCC (and Clang) flags: -ffp-contract=off (default is “fast”)
* https:/ /stackoverflow.com/questions/34436233 /fused-multiply-add-and-default-rounding-modes

\'/') PRINCETON UNIVERSITY

* Representing real numbers in a computer always involves an
approximation and a potential loss of significant digits.

* Testing for the equality of two real numbers is not a realistic way to think
when dealing with the numbers in a computer. It is more realistic to test the
difference of two numbers with respect to machine epsilon.

* Performing arithmetic on very small or very large numbers can lead to
errors that are not possible in abstract mathematics. We can get underflow
and overflow, and the order in which we do arithmetic can be important.
This is something to be aware of when writing low-level software to to do
computations.

* The more bits we use to represent a number, the greater the precision of the
representation and the more memory we consume.

https:/ /www.stat.berkeley.edu/~nolan/stat133/Spr04 /chapters/representations.pdf

\'/') PRINCETON UNIVERSITY

https://www.stat.berkeley.edu/~nolan/stat133/Spr04/chapters/representations.pdf

» What Every Computer Scientist Should Know About Floating-Point Arithmetic. Goldberg.
https:/ /docs.oracle.com/cd /E19957-01/806- 3568 /ncg_goldberg.html

* Numerical Computing with IEEE Floating Point Arithmetic. Overton, SIAM 2001

 Chapter 6, numerical considerations, Programming Massively Parallel Processors, A hand-
on approach, 3¢ edition, David B. Kirk and Wen-wei W. Hwu

« ESC18, “Optimal Floating Point Computation”, Vincenzo Innocente,
https:/ /agenda.infn.it/event/16941/contributions /34831 /attachments /24523 /27966 /
Vincenzo_OptimalFloatingPoint2018.pdf

» CoDas-HEP 2018, “Floating Point is Not Real”, Matthieu Lefebvre,
https:/ /indico.cern.ch/event/707498 / contributions /2916937 / attachments /1691892 /27
24587 /codas _fpa.pdf

* https:/ /stackoverflow.com/questions /39095993 / does-each-floating-point-operation-
take-the-same-time

 Accumulation of Round-Off Error in Fast Fourier Transforms, T. Kaneko and B. Liu, Jr. of
ACM, Vol. 17, No. 4, October 1970, pp. 637-654.

\'/') PRINCETON UNIVERSITY

https://docs.oracle.com/cd/E19957-01/806-%203568/ncg_goldberg.html
https://agenda.infn.it/event/16941/contributions/34831/attachments/24523/27966/Vincenzo_OptimalFloatingPoint2018.pdf
https://indico.cern.ch/event/707498/contributions/2916937/attachments/1691892/2724587/codas_fpa.pdf
https://stackoverflow.com/questions/39095993/does-each-floating-point-operation-take-the-same-time

BACK UP

\'” PRINCETON UNIVERSITY

+ Again, let us consider the floating point representation (assume x# 0)

p—1
x =—1° (2 d; B—i> B¢
=0

wheres € {0,1},B = 2,d; € {0,...,B — 1} withd, > 0,i € {0,...,p — 1},e € {€min, --+» Emax}-
* What is the largest number in the system?

xmax = (Z?:_Ol(B - 1) B_i)Bemax = (1 - B_p)Bemax+1’ (xmax)2= (1 - 2_p)26max+1
« What is the smallest positive normalized in the system
Xmin = BEmn, (Xpin) = 2°min
» The gap between number 1.0 and the next larger floating point number is called machine epsilon.
What is the machine epsilon in the system?

e=B~(P~D ¢, = (1.00..1), —(1.00..0), = (0.00 ...1),=2"®-1)

* The gap between BE and the next larger floating point number is called unit in the last place (ulp).
What is the upl in the system?

ulp(x) = B~ P~VRe = ¢ B¢ ulp(x), = (1.00...1),2¢ — (1.00 ...0),2¢ = (0.00...1),2¢=2~®P-1)2e

\') PRINCETON UNIVERSITY

» The IEEE standard requires that the result of addition, subtraction, multiplication and
division be exactly rounded.

 Exactly rounded means the results are calculated exactly and then rounded. For example: assuming
p =23, x=(1.00..00),x2° and z=(1.00..01),x2-%, then x-z is

(1.00000000000000000000000|)o x 2°
(0.00000000000000000000000|0100000000000000000000001)4 x 2°
= (0.11111111111111111111112{1011111111111111111111111) x 2°
Normalize : (1.11111111111111111111111[0111111111111111111111110) x 271
Round to
Nearest : (1.11111111111111111111111)g x 271

« Compute the result exactly is very expensive if the operands differ greatly in size
* The result of two or more arithmetic operations are NOT exactly rounded

* How is correctly rounded arithmetic implemented?

+ Using two additional guard bits plus one sticky bit guarantees that the result will be the same as
computed using exactly rounded [Goldberg 1990]. The above example can be done as

(' 1.00000000000000000000000|)

(' 0.00000000000000000000000[011)

= (0.11111111111111111111111]101)5 x 2°
()
()

Normalize : 1.11111111111111111111111401

Round to Nearest : T 1111111111111 11111111

\'/') PRINCETON UNIVERSITY

» The IEEE standard requires that the result of addition, subtraction, multiplication and
division be exactly rounded.

 Exactly rounded means the results are calculated exactly and then rounded. For example: assuming
p =23, x=(1.00..00),x2° and z=(1.00..01),x2-%, then x-z is

(1.00000000000000000000000|)o x 2°
(0.00000000000000000000000|0100000000000000000000001)4 x 2°
= (0.11111111111111111111112{1011111111111111111111111) x 2°
Normalize : (1.11111111111111111111111[0111111111111111111111110) x 271
Round to
Nearest : (1.11111111111111111111111)g x 271

« Compute the result exactly is very expensive if the operands differ greatly in size
* The result of two or more arithmetic operations are NOT exactly rounded

* How is correctly rounded arithmetic implemented?

+ Using two additional guard bits plus one sticky bit guarantees that the result will be the same as
computed using exactly rounded [Goldberg 1990]. The above example can be done as

(' 1.00000000000000000000000|)

(' 0.00000000000000000000000[011)

= (0.11111111111111111111111]101)5 x 2°
()
()

Normalize : 1.11111111111111111111111401

Round to Nearest : T 1111111111111 11111111

\'/') PRINCETON UNIVERSITY

 Cancellation occurs when we operate numbers that are not in floating point format
* For every x € R, there exists || < &40 such that
round(x) =x (14 ¢).
* Thus
round (round (x) — round (y)) = (round(x) — round(y))(l + &£3)
=(x(1+&)-y(1+e)) (1+e)
=(x —y)(1 + &) + (xe1-ye) (1 + &3),
and if (x —y) # 0,

(round(round(x)—round(y)) , _ X E1—YE
| = =] &3 + FE2L2 14y |
when x &, — ye, # 0, and x-y is small, the error could be > &p,4cn

\') PRINCETON UNIVERSITY

